NN-EVCLUS: Neural Network-based Evidential Clustering
- URL: http://arxiv.org/abs/2009.12795v2
- Date: Thu, 27 May 2021 01:56:10 GMT
- Title: NN-EVCLUS: Neural Network-based Evidential Clustering
- Authors: Thierry Denoeux
- Abstract summary: We introduce a neural-network based evidential clustering algorithm, called NN-EVCLUS.
It learns a mapping from attribute vectors to mass functions, in such a way that more similar inputs are mapped to output mass functions with a lower degree of conflict.
The network is trained to minimize the discrepancy between dissimilarities and degrees of conflict for all or some object pairs.
- Score: 6.713564212269253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evidential clustering is an approach to clustering based on the use of
Dempster-Shafer mass functions to represent cluster-membership uncertainty. In
this paper, we introduce a neural-network based evidential clustering
algorithm, called NN-EVCLUS, which learns a mapping from attribute vectors to
mass functions, in such a way that more similar inputs are mapped to output
mass functions with a lower degree of conflict. The neural network can be
paired with a one-class support vector machine to make it robust to outliers
and allow for novelty detection. The network is trained to minimize the
discrepancy between dissimilarities and degrees of conflict for all or some
object pairs. Additional terms can be added to the loss function to account for
pairwise constraints or labeled data, which can also be used to adapt the
metric. Comparative experiments show the superiority of N-EVCLUS over
state-of-the-art evidential clustering algorithms for a range of unsupervised
and constrained clustering tasks involving both attribute and dissimilarity
data.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Nonlinear subspace clustering by functional link neural networks [20.972039615938193]
Subspace clustering based on a feed-forward neural network has been demonstrated to provide better clustering accuracy than some advanced subspace clustering algorithms.
We employ a functional link neural network to transform data samples into a nonlinear domain.
We introduce a convex combination subspace clustering scheme, which combines a linear subspace clustering method with the functional link neural network subspace clustering approach.
arXiv Detail & Related papers (2024-02-03T06:01:21Z) - Learning Neural Eigenfunctions for Unsupervised Semantic Segmentation [12.91586050451152]
Spectral clustering is a theoretically grounded solution to it where the spectral embeddings for pixels are computed to construct distinct clusters.
Current approaches still suffer from inefficiencies in spectral decomposition and inflexibility in applying them to the test data.
This work addresses these issues by casting spectral clustering as a parametric approach that employs neural network-based eigenfunctions to produce spectral embeddings.
In practice, the neural eigenfunctions are lightweight and take the features from pre-trained models as inputs, improving training efficiency and unleashing the potential of pre-trained models for dense prediction.
arXiv Detail & Related papers (2023-04-06T03:14:15Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Revisiting Gaussian Neurons for Online Clustering with Unknown Number of
Clusters [0.0]
A novel local learning rule is presented that performs online clustering with a maximum limit of the number of cluster to be found.
The experimental results demonstrate stability in the learned parameters across a large number of training samples.
arXiv Detail & Related papers (2022-05-02T14:01:40Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDEC is an unsupervised framework for joint statistical representation learning and clustering.
Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets.
arXiv Detail & Related papers (2021-09-11T09:26:52Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
We propose a hierarchical graph neural network (GNN) model that learns how to cluster a set of images into an unknown number of identities.
Our hierarchical GNN uses a novel approach to merge connected components predicted at each level of the hierarchy to form a new graph at the next level.
arXiv Detail & Related papers (2021-07-03T01:28:42Z) - Joint Optimization of an Autoencoder for Clustering and Embedding [22.16059261437617]
We present an alternative where the autoencoder and the clustering are learned simultaneously.
That simple neural network, referred to as the clustering module, can be integrated into a deep autoencoder resulting in a deep clustering model.
arXiv Detail & Related papers (2020-12-07T14:38:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.