Learning Neural Eigenfunctions for Unsupervised Semantic Segmentation
- URL: http://arxiv.org/abs/2304.02841v1
- Date: Thu, 6 Apr 2023 03:14:15 GMT
- Title: Learning Neural Eigenfunctions for Unsupervised Semantic Segmentation
- Authors: Zhijie Deng and Yucen Luo
- Abstract summary: Spectral clustering is a theoretically grounded solution to it where the spectral embeddings for pixels are computed to construct distinct clusters.
Current approaches still suffer from inefficiencies in spectral decomposition and inflexibility in applying them to the test data.
This work addresses these issues by casting spectral clustering as a parametric approach that employs neural network-based eigenfunctions to produce spectral embeddings.
In practice, the neural eigenfunctions are lightweight and take the features from pre-trained models as inputs, improving training efficiency and unleashing the potential of pre-trained models for dense prediction.
- Score: 12.91586050451152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised semantic segmentation is a long-standing challenge in computer
vision with great significance. Spectral clustering is a theoretically grounded
solution to it where the spectral embeddings for pixels are computed to
construct distinct clusters. Despite recent progress in enhancing spectral
clustering with powerful pre-trained models, current approaches still suffer
from inefficiencies in spectral decomposition and inflexibility in applying
them to the test data. This work addresses these issues by casting spectral
clustering as a parametric approach that employs neural network-based
eigenfunctions to produce spectral embeddings. The outputs of the neural
eigenfunctions are further restricted to discrete vectors that indicate
clustering assignments directly. As a result, an end-to-end NN-based paradigm
of spectral clustering emerges. In practice, the neural eigenfunctions are
lightweight and take the features from pre-trained models as inputs, improving
training efficiency and unleashing the potential of pre-trained models for
dense prediction. We conduct extensive empirical studies to validate the
effectiveness of our approach and observe significant performance gains over
competitive baselines on Pascal Context, Cityscapes, and ADE20K benchmarks.
Related papers
- Image Clustering Algorithm Based on Self-Supervised Pretrained Models and Latent Feature Distribution Optimization [4.39139858370436]
This paper introduces an image clustering algorithm based on self-supervised pretrained models and latent feature distribution optimization.
Our approach outperforms the latest clustering algorithms and achieves state-of-the-art clustering results.
arXiv Detail & Related papers (2024-08-04T04:08:21Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - A Deep Dive into Deep Cluster [0.2578242050187029]
DeepCluster is a simple and scalable unsupervised pretraining of visual representations.
We show that DeepCluster convergence and performance depend on the interplay between the quality of the randomly filters of the convolutional layer and the selected number of clusters.
arXiv Detail & Related papers (2022-07-24T22:55:09Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
Cluster assignment of large and complex images is a crucial but challenging task in pattern recognition and computer vision.
We present a novel evolutionary unsupervised learning representation model with iterative optimization.
We jointly fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments.
arXiv Detail & Related papers (2021-03-31T13:58:10Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Intraclass clustering: an implicit learning ability that regularizes
DNNs [22.732204569029648]
We show that deep neural networks are regularized through their ability to extract meaningful clusters among a class.
Measures of intraclass clustering are designed based on the neuron- and layer-level representations of the training data.
arXiv Detail & Related papers (2021-03-11T15:26:27Z) - Robust spectral clustering using LASSO regularization [0.0]
This paper presents a variant of spectral clustering, called 1-spectral clustering, performed on a new random model closely related to block model.
Its goal is to promote a sparse eigenbasis solution of a 1 minimization problem revealing the natural structure of the graph.
arXiv Detail & Related papers (2020-04-08T07:12:56Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.