論文の概要: Human-Object Interaction Detection:A Quick Survey and Examination of
Methods
- arxiv url: http://arxiv.org/abs/2009.12950v1
- Date: Sun, 27 Sep 2020 20:58:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 03:44:20.477351
- Title: Human-Object Interaction Detection:A Quick Survey and Examination of
Methods
- Title(参考訳): 人間と物体の相互作用検出:クイックサーベイと方法の検討
- Authors: Trevor Bergstrom, Humphrey Shi
- Abstract要約: これは、この分野における最先端およびマイルストーンの研究に関する最初の一般的な調査である。
本稿では,人間と物体の相互作用検出の分野での展開に関する基礎的な調査を行う。
本稿では,HORCNNアーキテクチャを基礎研究として検討する。
- 参考スコア(独自算出の注目度): 17.8805983491991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human-object interaction detection is a relatively new task in the world of
computer vision and visual semantic information extraction. With the goal of
machines identifying interactions that humans perform on objects, there are
many real-world use cases for the research in this field. To our knowledge,
this is the first general survey of the state-of-the-art and milestone works in
this field. We provide a basic survey of the developments in the field of
human-object interaction detection. Many works in this field use multi-stream
convolutional neural network architectures, which combine features from
multiple sources in the input image. Most commonly these are the humans and
objects in question, as well as the spatial quality of the two. As far as we
are aware, there have not been in-depth studies performed that look into the
performance of each component individually. In order to provide insight to
future researchers, we perform an individualized study that examines the
performance of each component of a multi-stream convolutional neural network
architecture for human-object interaction detection. Specifically, we examine
the HORCNN architecture as it is a foundational work in the field. In addition,
we provide an in-depth look at the HICO-DET dataset, a popular benchmark in the
field of human-object interaction detection. Code and papers can be found at
https://github.com/SHI-Labs/Human-Object-Interaction-Detection.
- Abstract(参考訳): 人間と物体の相互作用の検出はコンピュータビジョンと視覚的意味情報抽出の世界で比較的新しいタスクである。
人間がオブジェクト上で実行するインタラクションを識別するマシンの目標により、この分野の研究には現実世界のユースケースが数多く存在する。
私たちの知る限り、この分野における最先端とマイルストーンに関する調査は、これが初めてです。
本稿では,人間と物体の相互作用検出の分野での開発に関する基礎的な調査を行う。
この分野の多くの作品は、入力画像の複数のソースからの特徴を組み合わせたマルチストリーム畳み込みニューラルネットワークアーキテクチャを使用している。
最も一般的なものは、人間と物体であり、両者の空間的品質である。
私たちが知っている限りでは、各コンポーネントのパフォーマンスを個別に調べる詳細な研究は行われていない。
今後の研究者に洞察を与えるため、人間と物体の相互作用検出のための多ストリーム畳み込みニューラルネットワークアーキテクチャの各コンポーネントの性能を個別に調査する。
具体的には,HORCNNアーキテクチャを基礎研究として検討する。
さらに,人間と物体の相互作用検出の分野で人気のあるベンチマークであるHICO-DETデータセットを詳細に検討する。
コードと論文はhttps://github.com/SHI-Labs/Human-Object-Interaction-Detectionにある。
関連論文リスト
- Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCueは、HOI検出における視覚的特徴抽出を改善するための新しいアプローチである。
コンテクストキューをインスタンスと相互作用検出器の両方に統合するマルチトウワーアーキテクチャを用いたトランスフォーマーベースの特徴抽出モジュールを開発した。
論文 参考訳(メタデータ) (2023-11-26T09:11:32Z) - HODN: Disentangling Human-Object Feature for HOI Detection [51.48164941412871]
本稿では,Human and Object Disentangling Network (HODN) を提案し,Human-Object Interaction (HOI) の関係を明示的にモデル化する。
インタラクションに人間的特徴がより寄与していることを考慮し,インタラクションデコーダが人間中心の領域に焦点を当てていることを確認するためのヒューマンガイドリンク手法を提案する。
提案手法は,V-COCOとHICO-Det Linkingデータセットの競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-20T04:12:50Z) - MECCANO: A Multimodal Egocentric Dataset for Humans Behavior
Understanding in the Industrial-like Domain [23.598727613908853]
本稿では,産業的な環境下での人間の行動理解を目的とした,エゴセントリックなビデオのデータセットMECCANOを提案する。
マルチモダリティの特徴は、視線信号、深度マップ、RGBビデオとカスタムヘッドセットが同時に取得される点である。
データセットは、人間の行動理解の文脈における基本的なタスクに対して、一人称視点から明示的にラベル付けされている。
論文 参考訳(メタデータ) (2022-09-19T00:52:42Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
本稿では,動きデータと動的記述子を融合させるグラフニューラルネットワークHO-GCNを提案する。
動的記述子を消費するネットワークは、最先端の予測結果が得られ、未確認オブジェクトへのネットワークの一般化に役立つことを示す。
論文 参考訳(メタデータ) (2022-06-25T09:55:39Z) - Detecting Human-to-Human-or-Object (H2O) Interactions with DIABOLO [29.0200561485714]
我々は,Human-to-Human-or-Object(H2O)という2種類のインタラクションを扱う新しいインタラクションデータセットを提案する。
さらに, 人間の身体的態度の記述に近づき, 周囲の相互作用の標的について記述することを目的とした, 動詞の新たな分類法を導入する。
提案手法は,1回のフォワードパスにおける全てのインタラクションを検出するための,効率的な主観中心単発撮影法であるDIABOLOを提案する。
論文 参考訳(メタデータ) (2022-01-07T11:00:11Z) - Detecting Human-Object Interaction via Fabricated Compositional Learning [106.37536031160282]
ヒューマンオブジェクトインタラクション(HOI)検出は、高レベルのシーン理解のための基本的なタスクです。
人間は珍しいまたは見えないHOIのサンプルを認識する非常に強力な構成知覚能力があります。
オープン長尾HOI検出の課題を解決するために,FCL(Fabricated Compositional Learning)を提案する。
論文 参考訳(メタデータ) (2021-03-15T08:52:56Z) - The MECCANO Dataset: Understanding Human-Object Interactions from
Egocentric Videos in an Industrial-like Domain [20.99718135562034]
我々は,産業的な環境下での人間と物体の相互作用を研究するための,エゴセントリックビデオの最初のデータセットであるMECCANOを紹介した。
このデータセットは、人間とオブジェクトの相互作用をエゴセントリックな視点から認識するタスクのために明示的にラベル付けされている。
ベースラインの結果から,MECCANOデータセットは,産業的なシナリオにおける自我中心の人間とオブジェクトの相互作用を研究する上で,困難なベンチマークであることが示された。
論文 参考訳(メタデータ) (2020-10-12T12:50:30Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
人-物間相互作用(HOI)検出の課題に対処する。
既存の方法は、人間と物体の対の相互作用を独立に認識するか、複雑な外観に基づく共同推論を行う。
本稿では,抽象的空間意味表現を活用して,各対象対を記述し,二重関係グラフを用いてシーンの文脈情報を集約する。
論文 参考訳(メタデータ) (2020-08-26T17:59:40Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
本研究では,人間と物体の相互作用を直接検出する新しい完全畳み込み手法を提案する。
我々のネットワークは相互作用点を予測し、その相互作用を直接ローカライズし、分類する。
V-COCOとHICO-DETの2つの人気のあるベンチマークで実験が行われる。
論文 参考訳(メタデータ) (2020-03-31T08:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。