Disentangled Neural Architecture Search
- URL: http://arxiv.org/abs/2009.13266v1
- Date: Thu, 24 Sep 2020 03:35:41 GMT
- Title: Disentangled Neural Architecture Search
- Authors: Xinyue Zheng, Peng Wang, Qigang Wang, Zhongchao Shi
- Abstract summary: We propose disentangled neural architecture search (DNAS) which disentangles the hidden representation of the controller into semantically meaningful concepts.
DNAS successfully disentangles the architecture representations, including operation selection, skip connections, and number of layers.
Dense-sampling leads to neural architecture search with higher efficiency and better performance.
- Score: 7.228790381070109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural architecture search has shown its great potential in various areas
recently. However, existing methods rely heavily on a black-box controller to
search architectures, which suffers from the serious problem of lacking
interpretability. In this paper, we propose disentangled neural architecture
search (DNAS) which disentangles the hidden representation of the controller
into semantically meaningful concepts, making the neural architecture search
process interpretable. Based on systematical study, we discover the correlation
between network architecture and its performance, and propose a dense-sampling
strategy to conduct a targeted search in promising regions that may generate
well-performing architectures. We show that: 1) DNAS successfully disentangles
the architecture representations, including operation selection, skip
connections, and number of layers. 2) Benefiting from interpretability, DNAS
can find excellent architectures under different FLOPS restrictions flexibly.
3) Dense-sampling leads to neural architecture search with higher efficiency
and better performance. On the NASBench-101 dataset, DNAS achieves
state-of-the-art performance of 94.21% using less than 1/13 computational cost
of baseline methods. On ImageNet dataset, DNAS discovers the competitive
architectures that achieves 22.7% test error. our method provides a new
perspective of understanding neural architecture search.
Related papers
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
1-bit convolutional neural networks (CNNs) with binary weights and activations show their potential for resource-limited embedded devices.
One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS.
We introduce Discrepant Child-Parent Neural Architecture Search (DCP-NAS) to efficiently search 1-bit CNNs.
arXiv Detail & Related papers (2023-06-27T11:28:29Z) - GeNAS: Neural Architecture Search with Better Generalization [14.92869716323226]
Recent neural architecture search (NAS) approaches rely on validation loss or accuracy to find the superior network for the target data.
In this paper, we investigate a new neural architecture search measure for excavating architectures with better generalization.
arXiv Detail & Related papers (2023-05-15T12:44:54Z) - D-DARTS: Distributed Differentiable Architecture Search [75.12821786565318]
Differentiable ARchiTecture Search (DARTS) is one of the most trending Neural Architecture Search (NAS) methods.
We propose D-DARTS, a novel solution that addresses this problem by nesting several neural networks at cell-level.
arXiv Detail & Related papers (2021-08-20T09:07:01Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
We propose a two-sided variational graph autoencoder, which allows to smoothly encode and accurately reconstruct neural architectures from various search spaces.
We evaluate the proposed approach on neural architectures defined by the ENAS approach, the NAS-Bench-101 and the NAS-Bench-201 search spaces.
arXiv Detail & Related papers (2020-10-09T17:05:41Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - Multi-Objective Neural Architecture Search Based on Diverse Structures
and Adaptive Recommendation [4.595675084986132]
The search space of neural architecture search (NAS) for convolutional neural network (CNN) is huge.
We propose MoARR algorithm, which utilizes the existing research results and historical information to quickly find architectures that are both lightweight and accurate.
Experimental results show that our MoARR can achieve a powerful and lightweight model (with 1.9% error rate and 2.3M parameters) on CIFAR-10 in 6 GPU hours.
arXiv Detail & Related papers (2020-07-06T13:42:33Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution.
With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based generalization.
To alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme.
arXiv Detail & Related papers (2020-06-18T08:23:02Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators.
In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs.
We propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN.
arXiv Detail & Related papers (2020-06-16T13:27:30Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.