論文の概要: Zero-shot Multi-Domain Dialog State Tracking Using Descriptive Rules
- arxiv url: http://arxiv.org/abs/2009.13275v1
- Date: Thu, 17 Sep 2020 18:14:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 08:15:39.766950
- Title: Zero-shot Multi-Domain Dialog State Tracking Using Descriptive Rules
- Title(参考訳): 記述規則を用いたゼロショットマルチドメインダイアログ状態追跡
- Authors: Edgar Altszyler, Pablo Brusco, Nikoletta Basiou, John Byrnes and
Dimitra Vergyri
- Abstract要約: 本稿では、最先端のニューラルネットワークに記述論理則を組み込むためのフレームワークを提案する。
ルールはアーキテクチャを変更することなく既存のネットワークに統合される。
実験により、論理規則を組み込むことで、元のシステムの予測能力を低下させることなく、目に見えないラベルの予測が可能になることが示されている。
- 参考スコア(独自算出の注目度): 2.991514218795633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a framework for incorporating descriptive logical
rules in state-of-the-art neural networks, enabling them to learn how to handle
unseen labels without the introduction of any new training data. The rules are
integrated into existing networks without modifying their architecture, through
an additional term in the network's loss function that penalizes states of the
network that do not obey the designed rules. As a case of study, the framework
is applied to an existing neural-based Dialog State Tracker. Our experiments
demonstrate that the inclusion of logical rules allows the prediction of unseen
labels, without deteriorating the predictive capacity of the original system.
- Abstract(参考訳): 本研究では、最先端のニューラルネットワークに記述論理ルールを組み込むことで、新たなトレーニングデータを導入することなく、未知ラベルの扱い方を学ぶことができるフレームワークを提案する。
ルールはアーキテクチャを変更することなく既存のネットワークに統合され、設計されたルールに従わないネットワークの状態にペナルティを課すネットワークの損失関数に追加の用語によって行われる。
研究の例として、このフレームワークは既存のニューラルベースDialog State Trackerに適用される。
実験により, 論理規則の導入により, 未知ラベルの予測が可能となり, 元のシステムの予測能力が低下しないことを示した。
関連論文リスト
- IF2Net: Innately Forgetting-Free Networks for Continual Learning [49.57495829364827]
継続的な学習は、以前に学んだ知識に干渉することなく、新しい概念を漸進的に吸収することができる。
ニューラルネットワークの特性に触発され,本研究は,IF2Net(Innately Forgetting-free Network)の設計方法について検討した。
IF2Netは、1つのネットワークがテスト時にタスクのIDを告げることなく、本質的に無制限のマッピングルールを学習することを可能にする。
論文 参考訳(メタデータ) (2023-06-18T05:26:49Z) - Interpretable and Explainable Logical Policies via Neurally Guided
Symbolic Abstraction [23.552659248243806]
ニューラルgUided Differentiable loGic policiEs (NUDGE)を紹介する。
NUDGEは、トレーニングされたニューラルネットワークベースのエージェントを使用して、候補重み付けされたロジックルールの探索をガイドし、差別化可能なロジックを使用してロジックエージェントをトレーニングする。
実験により, NUDGEエージェントは, 純粋に神経性に優れ, 初期状態や問題の大きさの異なる環境に対して良好な柔軟性を示しながら, 解釈可能かつ説明可能なポリシーを誘導できることを示した。
論文 参考訳(メタデータ) (2023-06-02T10:59:44Z) - Neuro-Symbolic Hierarchical Rule Induction [12.610497441047395]
Inductive Logic Programming (ILP) 問題を解決するために, 効率的な解釈可能なニューロシンボリックモデルを提案する。
階層構造で組織されたメタルールの集合から構築されたこのモデルでは、メタルールの事実や体述と一致するように埋め込みを学習することで、一階規則が発明される。
我々は, 様々な課題(ILP, 視覚ゲノム, 強化学習)において, 最先端の手法に対して, モデルの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2021-12-26T17:02:14Z) - Towards fuzzification of adaptation rules in self-adaptive architectures [2.730650695194413]
我々は、自己適応型アーキテクチャにおける分析と計画段階にニューラルネットワークを活用することに注力する。
このようなニーズに対処する簡単な選択肢のひとつは、論理ルールに基づいた推論をニューラルネットワークに置き換えることだ。
この連続体の中でナビゲートする方法を示し、元の論理ルールを自然に埋め込むニューラルネットワークアーキテクチャを作成します。
論文 参考訳(メタデータ) (2021-12-17T12:17:16Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
我々は最近提案された論理ニューラルネットワーク(LNN)を用いた学習規則を提案する。
他のものと比較して、LNNは古典的なブール論理と強く結びついている。
標準ベンチマークタスクの実験では、LNNルールが極めて解釈可能であることを確認した。
論文 参考訳(メタデータ) (2021-12-06T19:38:30Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Learning Accurate and Interpretable Decision Rule Sets from Neural
Networks [5.280792199222362]
本論文では,分類の解釈可能なモデルとして独立論理則の集合を解読正規形式で学習する新しいパラダイムを提案する。
我々は、ニューラルネットワークを特定の、しかし非常に単純な2層アーキテクチャでトレーニングすることとして、解釈可能な決定ルールセットを学ぶ問題を考える。
論文 参考訳(メタデータ) (2021-03-04T04:10:19Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
論理ニューラルネットワーク(LNN)と呼ばれる最近のニューラルシンボリックフレームワークは、ニューラルネットワークとシンボリックロジックの両方のキープロパティを同時に提供することができる。
外部知識ソースからのモデルフリー強化学習を可能にする統合手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T12:34:59Z) - NSL: Hybrid Interpretable Learning From Noisy Raw Data [66.15862011405882]
本稿では,ラベル付き非構造データから解釈可能なルールを学習するニューラルシンボリック学習フレームワークNSLを提案する。
NSLは、機能抽出のためのトレーニング済みニューラルネットワークと、解集合セマンティクスに基づくルール学習のための最先端のILPシステムであるFastLASを組み合わせる。
NSLは、MNISTデータから堅牢なルールを学び、ニューラルネットワークやランダムフォレストベースラインと比較して、比較または優れた精度を達成できることを実証します。
論文 参考訳(メタデータ) (2020-12-09T13:02:44Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。