論文の概要: Multi-scale Receptive Fields Graph Attention Network for Point Cloud
Classification
- arxiv url: http://arxiv.org/abs/2009.13289v1
- Date: Mon, 28 Sep 2020 13:01:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 22:07:29.460618
- Title: Multi-scale Receptive Fields Graph Attention Network for Point Cloud
Classification
- Title(参考訳): ポイントクラウド分類のためのマルチスケール受容場グラフ注意ネットワーク
- Authors: Xi-An Li, Lei Zhang, Li-Yan Wang, Jian Lu
- Abstract要約: MRFGATアーキテクチャはModelNet10とModelNet40データセットでテストされている。
その結果,形状分類作業における最先端性能が得られた。
- 参考スコア(独自算出の注目度): 35.88116404702807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the implication of point cloud is still challenging to achieve
the goal of classification or segmentation due to the irregular and sparse
structure of point cloud. As we have known, PointNet architecture as a
ground-breaking work for point cloud which can learn efficiently shape features
directly on unordered 3D point cloud and have achieved favorable performance.
However, this model fail to consider the fine-grained semantic information of
local structure for point cloud. Afterwards, many valuable works are proposed
to enhance the performance of PointNet by means of semantic features of local
patch for point cloud. In this paper, a multi-scale receptive fields graph
attention network (named after MRFGAT) for point cloud classification is
proposed. By focusing on the local fine features of point cloud and applying
multi attention modules based on channel affinity, the learned feature map for
our network can well capture the abundant features information of point cloud.
The proposed MRFGAT architecture is tested on ModelNet10 and ModelNet40
datasets, and results show it achieves state-of-the-art performance in shape
classification tasks.
- Abstract(参考訳): 点雲の意味を理解することは、点雲の不規則でスパースな構造のため、分類や区分の目標を達成することが依然として難しい。
ご存知の通り、PointNetアーキテクチャはポイントクラウドのための画期的な作業であり、非秩序の3Dポイントクラウド上で機能を効率的に形作り、良好なパフォーマンスを実現しています。
しかし、このモデルは、ポイントクラウドの局所構造の細かな意味情報を考慮しない。
その後、ポイントクラウドのローカルパッチのセマンティックな特徴を利用して、ポイントネットの性能を高めるために、多くの貴重な作品が提案されている。
本稿では,ポイントクラウド分類のためのマルチスケール受容場グラフアテンションネットワーク(MRFGATに因んで名づけられた)を提案する。
ポイントクラウドの局所的な微細な特徴に着目し,チャネル親和性に基づくマルチアテンションモジュールを適用することにより,ネットワークの学習した特徴マップが,ポイントクラウドの豊富な特徴情報をうまく捉えることができる。
MRFGAT アーキテクチャは ModelNet10 と ModelNet40 のデータセットでテストされ,その結果,形状分類タスクにおける最先端性能が得られた。
関連論文リスト
- CLIP-based Point Cloud Classification via Point Cloud to Image Translation [19.836264118079573]
Contrastive Vision-Language Pre-Training(CLIP)ベースのポイントクラウド分類モデル(PointCLIP)は、ポイントクラウド分類研究領域に新たな方向性を追加した。
本稿では,PPCITNet(Pretrained Point Cloud to Image Translation Network)を提案する。
論文 参考訳(メタデータ) (2024-08-07T04:50:05Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - D-Net: Learning for Distinctive Point Clouds by Self-Attentive Point
Searching and Learnable Feature Fusion [48.57170130169045]
我々は,自己注意点探索と学習可能な特徴融合に基づいて,特徴点雲を学習するためのD-Netを提案する。
各特徴点集合に対してコンパクトな特徴表現を生成するために,その特徴を抽出するために,積み重ねられた自己ゲート畳み込みを提案する。
その結果、学習した点雲の区別分布は、同じクラスのオブジェクトと高度に一致し、他のクラスのオブジェクトと異なることが明らかとなった。
論文 参考訳(メタデータ) (2023-05-10T02:19:00Z) - Shrinking unit: a Graph Convolution-Based Unit for CNN-like 3D Point
Cloud Feature Extractors [0.0]
我々は、画像領域からのインスピレーションの欠如が、そのようなギャップの主な原因であると主張している。
我々は,CNNのような3Dポイント・クラウド特徴抽出器の設計のために,Shrinkingユニットと呼ばれるグラフ畳み込み単位を提案する。
論文 参考訳(メタデータ) (2022-09-26T15:28:31Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
ポイント・クラウド・コンプリート(Point cloud completion)とは、部分的な3次元ポイント・クラウドから3次元の形状を完成させることである。
そこで我々は,kNNを除去するために,ポイントクラウドをポイント単位に処理する新しいニューラルネットワークを提案する。
提案するフレームワークであるPointAttNはシンプルで簡潔で効果的であり、3次元形状の構造情報を正確に捉えることができる。
論文 参考訳(メタデータ) (2022-03-16T09:20:01Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
大規模クラウドラベリングの制約により,教師なしのポイントクラウド表現学習が注目されている。
本稿では、ディープニューラルネットワークを用いた教師なしポイントクラウド表現学習の総合的なレビューを提供する。
論文 参考訳(メタデータ) (2022-02-28T07:46:05Z) - CP-Net: Contour-Perturbed Reconstruction Network for Self-Supervised
Point Cloud Learning [53.1436669083784]
本稿では,CP-Net(Contour-Perturbed Restruction Network)を提案する。
分類では、ModelNet40(92.5%の精度)とScanObjectNN(87.9%の精度)の完全教師付き手法で競合する結果を得る。
論文 参考訳(メタデータ) (2022-01-20T15:04:12Z) - FatNet: A Feature-attentive Network for 3D Point Cloud Processing [1.502579291513768]
本稿では,グローバルポイントベースの機能とエッジベースの機能を組み合わせた,新たな機能指向ニューラルネットワーク層であるfat layerを提案する。
当社のアーキテクチャは,ModelNet40データセットで示すように,ポイントクラウド分類のタスクにおける最先端の成果を達成する。
論文 参考訳(メタデータ) (2021-04-07T23:13:56Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
本稿では,点雲に基づく3次元オブジェクトの補完と分類手法を提案する。
デコーダの段階では,グローバルな活性化エントロピーの最大化を目的とした新しい演算子である地域畳み込みを提案する。
我々は,オブジェクトの完成度や分類,最先端の精度の達成など,異なる3次元タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2020-08-17T14:32:35Z) - TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly
Representations [20.318695890515613]
本稿では,固定長ディスクリプタを用いたポイントクラウドの表現に挑戦する自動エンコーダTearingNetを提案する。
我々のTeringNetは、提案されたTeringネットワークモジュールと、相互に反復的に相互作用するFoldingネットワークモジュールによって特徴付けられる。
実験は、点雲の再構成や、ベンチマークよりもトポロジに優しい表現を生成するという点で、我々の提案の優位性を示している。
論文 参考訳(メタデータ) (2020-06-17T22:42:43Z) - Airborne LiDAR Point Cloud Classification with Graph Attention
Convolution Neural Network [5.69168146446103]
本稿では,空飛ぶLiDARにより得られる非構造化3次元点雲の分類に直接適用可能なグラフ注意畳み込みニューラルネットワーク(GACNN)を提案する。
提案するグラフアテンション・コンボリューション・モジュールに基づいて,GACNNと呼ばれるエンド・ツー・エンドのエンコーダ・デコーダネットワークを設計し,ポイント・クラウドのマルチスケールな特徴を捉える。
ISPRS 3Dラベリングデータセットの実験では、提案モデルが平均F1スコア(71.5%)と全精度(83.2%)で新しい最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2020-04-20T05:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。