Aspects of Terminological and Named Entity Knowledge within Rule-Based
Machine Translation Models for Under-Resourced Neural Machine Translation
Scenarios
- URL: http://arxiv.org/abs/2009.13398v1
- Date: Mon, 28 Sep 2020 15:19:23 GMT
- Title: Aspects of Terminological and Named Entity Knowledge within Rule-Based
Machine Translation Models for Under-Resourced Neural Machine Translation
Scenarios
- Authors: Daniel Torregrosa and Nivranshu Pasricha and Maraim Masoud and
Bharathi Raja Chakravarthi and Juan Alonso and Noe Casas and Mihael Arcan
- Abstract summary: Rule-based machine translation is a machine translation paradigm where linguistic knowledge is encoded by an expert.
We describe different approaches to leverage the information contained in rule-based machine translation systems to improve a neural machine translation model.
Our results suggest that the proposed models have limited ability to learn from external information.
- Score: 3.413805964168321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rule-based machine translation is a machine translation paradigm where
linguistic knowledge is encoded by an expert in the form of rules that
translate text from source to target language. While this approach grants
extensive control over the output of the system, the cost of formalising the
needed linguistic knowledge is much higher than training a corpus-based system,
where a machine learning approach is used to automatically learn to translate
from examples. In this paper, we describe different approaches to leverage the
information contained in rule-based machine translation systems to improve a
corpus-based one, namely, a neural machine translation model, with a focus on a
low-resource scenario. Three different kinds of information were used:
morphological information, named entities and terminology. In addition to
evaluating the general performance of the system, we systematically analysed
the performance of the proposed approaches when dealing with the targeted
phenomena. Our results suggest that the proposed models have limited ability to
learn from external information, and most approaches do not significantly alter
the results of the automatic evaluation, but our preliminary qualitative
evaluation shows that in certain cases the hypothesis generated by our system
exhibit favourable behaviour such as keeping the use of passive voice.
Related papers
- DISCERN: Decoding Systematic Errors in Natural Language for Text Classifiers [18.279429202248632]
We introduce DISCERN, a framework for interpreting systematic biases in text classifiers using language explanations.
DISCERN iteratively generates precise natural language descriptions of systematic errors by employing an interactive loop between two large language models.
We show that users can interpret systematic biases more effectively (by over 25% relative) and efficiently when described through language explanations as opposed to cluster exemplars.
arXiv Detail & Related papers (2024-10-29T17:04:55Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
Our model iteratively selects or synthesizes a data-point according to one of a range of information-theoretic policies.
We find that the information-theoretic policies that our model uses to select items to query the informant achieve sample efficiency comparable to, or greater than, fully supervised approaches.
arXiv Detail & Related papers (2024-05-08T00:18:56Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
Morphologically rich languages pose difficulties to machine translation.
A large amount of differently inflected word surface forms entails a larger vocabulary.
Some inflected forms of infrequent terms typically do not appear in the training corpus.
Linguistic agreement requires the system to correctly match the grammatical categories between inflected word forms in the output sentence.
arXiv Detail & Related papers (2022-03-25T10:13:20Z) - Evaluating the Morphosyntactic Well-formedness of Generated Texts [88.20502652494521]
We propose L'AMBRE -- a metric to evaluate the morphosyntactic well-formedness of text.
We show the effectiveness of our metric on the task of machine translation through a diachronic study of systems translating into morphologically-rich languages.
arXiv Detail & Related papers (2021-03-30T18:02:58Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
A few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation.
This is partly due to ease of use, and partly because researchers expect to see them and know how to interpret them.
In this paper, we urge the community for more careful consideration of how they automatically evaluate their models.
arXiv Detail & Related papers (2020-10-26T13:57:20Z) - On Learning Text Style Transfer with Direct Rewards [101.97136885111037]
Lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task.
We leverage semantic similarity metrics originally used for fine-tuning neural machine translation models.
Our model provides significant gains in both automatic and human evaluation over strong baselines.
arXiv Detail & Related papers (2020-10-24T04:30:02Z) - Systematic Generalization on gSCAN with Language Conditioned Embedding [19.39687991647301]
Systematic Generalization refers to a learning algorithm's ability to extrapolate learned behavior to unseen situations.
We propose a novel method that learns objects' contextualized embeddings with dynamic message passing conditioned on the input natural language.
arXiv Detail & Related papers (2020-09-11T17:35:05Z) - How Context Affects Language Models' Factual Predictions [134.29166998377187]
We integrate information from a retrieval system with a pre-trained language model in a purely unsupervised way.
We report that augmenting pre-trained language models in this way dramatically improves performance and that the resulting system, despite being unsupervised, is competitive with a supervised machine reading baseline.
arXiv Detail & Related papers (2020-05-10T09:28:12Z) - Sentence Level Human Translation Quality Estimation with Attention-based
Neural Networks [0.30458514384586394]
This paper explores the use of Deep Learning methods for automatic estimation of quality of human translations.
Empirical results on a large human annotated dataset show that the neural model outperforms feature-based methods significantly.
arXiv Detail & Related papers (2020-03-13T16:57:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.