Compositionality of Linearly Solvable Optimal Control in Networked
Multi-Agent Systems
- URL: http://arxiv.org/abs/2009.13609v2
- Date: Mon, 22 Mar 2021 19:33:28 GMT
- Title: Compositionality of Linearly Solvable Optimal Control in Networked
Multi-Agent Systems
- Authors: Lin Song, Neng Wan, Aditya Gahlawat, Naira Hovakimyan, and Evangelos
A. Theodorou
- Abstract summary: We discuss the methodology of generalizing the optimal control law from learned component tasks to unlearned composite tasks on Multi-Agent Systems (MASs)
The proposed approach achieves both the compositionality and optimality of control actions simultaneously within the cooperative MAS framework in both discrete- and continuous-time in a sample-efficient manner.
- Score: 27.544923751902807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we discuss the methodology of generalizing the optimal control
law from learned component tasks to unlearned composite tasks on Multi-Agent
Systems (MASs), by using the linearity composition principle of linearly
solvable optimal control (LSOC) problems. The proposed approach achieves both
the compositionality and optimality of control actions simultaneously within
the cooperative MAS framework in both discrete- and continuous-time in a
sample-efficient manner, which reduces the burden of re-computation of the
optimal control solutions for the new task on the MASs. We investigate the
application of the proposed approach on the MAS with coordination between
agents. The experiments show feasible results in investigated scenarios,
including both discrete and continuous dynamical systems for task
generalization without resampling.
Related papers
- Hypernetwork-based approach for optimal composition design in partially controlled multi-agent systems [5.860363407227059]
Partially Controlled Multi-Agent Systems (PCMAS) are comprised of controllable agents, managed by a system designer, and uncontrollable agents, operating autonomously.
This study addresses an optimal composition design problem in PCMAS, which involves the system designer's problem, determining the optimal number and policies of controllable agents, and the uncontrollable agents' problem.
We propose a novel hypernetwork-based framework that jointly optimize the system's composition and agent policies.
arXiv Detail & Related papers (2025-02-18T07:35:24Z) - Efficient and Scalable Deep Reinforcement Learning for Mean Field Control Games [16.62770187749295]
Mean Field Control Games (MFCGs) provide a powerful theoretical framework for analyzing systems of infinitely many interacting agents.
This paper presents a scalable deep Reinforcement Learning (RL) approach to approximate equilibrium solutions of MFCGs.
arXiv Detail & Related papers (2024-12-28T02:04:53Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.
We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
We study multi-agent reinforcement learning (MARL) for the general-sum Markov Games (MGs) under the general function approximation.
We introduce a novel complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for general-sum MGs.
We show that our algorithm provides comparable sublinear regret to the existing works.
arXiv Detail & Related papers (2023-10-10T01:39:04Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Distributed Algorithms for Linearly-Solvable Optimal Control in
Networked Multi-Agent Systems [15.782670973813774]
A distributed framework is proposed to partition the optimal control problem of a networked MAS into several local optimal control problems.
For discrete-time systems, the joint Bellman equation of each subsystem is transformed into a system of linear equations.
For continuous-time systems, the joint optimality equation of each subsystem is converted into a linear partial differential equation.
arXiv Detail & Related papers (2021-02-18T01:31:17Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - A Novel Multi-Agent System for Complex Scheduling Problems [2.294014185517203]
This paper is the conception and implementation of a multi-agent system that is applicable in various problem domains.
We simulate a NP-hard scheduling problem to demonstrate the validity of our approach.
This paper highlights the advantages of the agent-based approach, like the reduction in layout complexity, improved control of complicated systems, and extendability.
arXiv Detail & Related papers (2020-04-20T14:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.