Hypernetwork-based approach for optimal composition design in partially controlled multi-agent systems
- URL: http://arxiv.org/abs/2502.12605v1
- Date: Tue, 18 Feb 2025 07:35:24 GMT
- Title: Hypernetwork-based approach for optimal composition design in partially controlled multi-agent systems
- Authors: Kyeonghyeon Park, David Molina Concha, Hyun-Rok Lee, Chi-Guhn Lee, Taesik Lee,
- Abstract summary: Partially Controlled Multi-Agent Systems (PCMAS) are comprised of controllable agents, managed by a system designer, and uncontrollable agents, operating autonomously.
This study addresses an optimal composition design problem in PCMAS, which involves the system designer's problem, determining the optimal number and policies of controllable agents, and the uncontrollable agents' problem.
We propose a novel hypernetwork-based framework that jointly optimize the system's composition and agent policies.
- Score: 5.860363407227059
- License:
- Abstract: Partially Controlled Multi-Agent Systems (PCMAS) are comprised of controllable agents, managed by a system designer, and uncontrollable agents, operating autonomously. This study addresses an optimal composition design problem in PCMAS, which involves the system designer's problem, determining the optimal number and policies of controllable agents, and the uncontrollable agents' problem, identifying their best-response policies. Solving this bi-level optimization problem is computationally intensive, as it requires repeatedly solving multi-agent reinforcement learning problems under various compositions for both types of agents. To address these challenges, we propose a novel hypernetwork-based framework that jointly optimizes the system's composition and agent policies. Unlike traditional methods that train separate policy networks for each composition, the proposed framework generates policies for both controllable and uncontrollable agents through a unified hypernetwork. This approach enables efficient information sharing across similar configurations, thereby reducing computational overhead. Additional improvements are achieved by incorporating reward parameter optimization and mean action networks. Using real-world New York City taxi data, we demonstrate that our framework outperforms existing methods in approximating equilibrium policies. Our experimental results show significant improvements in key performance metrics, such as order response rate and served demand, highlighting the practical utility of controlling agents and their potential to enhance decision-making in PCMAS.
Related papers
- Hierarchical Reinforcement Learning for Optimal Agent Grouping in Cooperative Systems [0.4759142872591625]
This paper presents a hierarchical reinforcement learning (RL) approach to address the agent grouping or pairing problem in cooperative multi-agent systems.
By employing a hierarchical RL framework, we distinguish between high-level decisions of grouping and low-level agents' actions.
We incorporate permutation-in neural networks to handle the homogeneity and cooperation among agents, enabling effective coordination.
arXiv Detail & Related papers (2025-01-11T14:22:10Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose a novel framework for agent-oriented planning in multi-agent systems, leveraging a fast task decomposition and allocation process.
We integrate a feedback loop into the proposed framework to further enhance the effectiveness and robustness of such a problem-solving process.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization [17.392822956504848]
We propose a reinforcement learning framework designed to construct high-quality solutions for multi-agent tasks efficiently.
PARCO integrates three key components: (1) transformer-based communication layers to enable effective agent collaboration during parallel solution construction, (2) a multiple pointer mechanism for low-latency, parallel agent decision-making, and (3) priority-based conflict handlers to resolve decision conflicts via learned priorities.
We evaluate PARCO in multi-agent vehicle routing and scheduling problems where our approach outperforms state-of-the-art learning methods and demonstrates strong generalization ability and remarkable computational efficiency.
arXiv Detail & Related papers (2024-09-05T17:49:18Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Distributed-Training-and-Execution Multi-Agent Reinforcement Learning
for Power Control in HetNet [48.96004919910818]
We propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet.
To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems.
In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process.
arXiv Detail & Related papers (2022-12-15T17:01:56Z) - Efficient Domain Coverage for Vehicles with Second-Order Dynamics via
Multi-Agent Reinforcement Learning [9.939081691797858]
We present a reinforcement learning (RL) approach for the multi-agent efficient domain coverage problem involving agents with second-order dynamics.
Our proposed network architecture includes the incorporation of LSTM and self-attention, which allows the trained policy to adapt to a variable number of agents.
arXiv Detail & Related papers (2022-11-11T01:59:12Z) - Compositionality of Linearly Solvable Optimal Control in Networked
Multi-Agent Systems [27.544923751902807]
We discuss the methodology of generalizing the optimal control law from learned component tasks to unlearned composite tasks on Multi-Agent Systems (MASs)
The proposed approach achieves both the compositionality and optimality of control actions simultaneously within the cooperative MAS framework in both discrete- and continuous-time in a sample-efficient manner.
arXiv Detail & Related papers (2020-09-28T20:21:48Z) - A Novel Multi-Agent System for Complex Scheduling Problems [2.294014185517203]
This paper is the conception and implementation of a multi-agent system that is applicable in various problem domains.
We simulate a NP-hard scheduling problem to demonstrate the validity of our approach.
This paper highlights the advantages of the agent-based approach, like the reduction in layout complexity, improved control of complicated systems, and extendability.
arXiv Detail & Related papers (2020-04-20T14:04:58Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.