A posteriori corrections to the Iterative Qubit Coupled Cluster method
to minimize the use of quantum resources in large-scale calculations
- URL: http://arxiv.org/abs/2009.13622v1
- Date: Mon, 28 Sep 2020 20:57:32 GMT
- Title: A posteriori corrections to the Iterative Qubit Coupled Cluster method
to minimize the use of quantum resources in large-scale calculations
- Authors: Ilya G. Ryabinkin, Artur F. Izmaylov, and Scott N. Genin
- Abstract summary: We present a variety of a posteriori corrections to the iQCC energies to reduce the number of iterations to achieve the desired accuracy.
We demonstrate the utility and efficiency of our approach numerically on the examples of 10-qubit N$$ molecule, the 24-qubit H$$O stretch, and 56-qubit singlet-triplet gap calculations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The iterative qubit coupled cluster (iQCC) method is a systematic variational
approach to solve the electronic structure problem on universal quantum
computers. It is able to use arbitrarily shallow quantum circuits at expense of
iterative canonical transformation of the Hamiltonian and rebuilding a circuit.
Here we present a variety of a posteriori corrections to the iQCC energies to
reduce the number of iterations to achieve the desired accuracy. Our energy
corrections are based on a low-order perturbation theory series that can be
efficiently evaluated on a classical computer. Moreover, capturing a part of
the total energy perturbatively, allows us to formulate the qubit active-space
concept, in which only a subset of all qubits is treated variationally. As a
result, further reduction of quantum resource requirements is achieved. We
demonstrate the utility and efficiency of our approach numerically on the
examples of 10-qubit N$_2$ molecule dissociation, the 24-qubit H$_2$O symmetric
stretch, and 56-qubit singlet-triplet gap calculations for the technologically
important complex, tris-(2-phenylpyridine)iridium(III), Ir(ppy)$_3$.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Reducing the runtime of fault-tolerant quantum simulations in chemistry
through symmetry-compressed double factorization [0.0]
We introduce the symmetry-compressed double factorization (SCDF) approach, which combines a compressed double factorization of the Hamiltonian with the symmetry shift technique, significantly reducing the 1-norm value.
For the systems considered here, SCDF leads to a sizeable reduction of the Toffoli gate count in comparison to other variants of double factorization or even tensor hypercontraction.
arXiv Detail & Related papers (2024-03-06T07:11:02Z) - Towards Efficient Quantum Computing for Quantum Chemistry: Reducing Circuit Complexity with Transcorrelated and Adaptive Ansatz Techniques [0.0]
This work demonstrates how to reduce circuit depth by combining the transcorrelated (TC) approach with adaptive quantum ans"atze.
Our study demonstrates that combining the TC method with adaptive ans"atze yields compact, noise-resilient, and easy-to-optimize quantum circuits.
arXiv Detail & Related papers (2024-02-26T15:31:56Z) - Variational quantum eigensolver for closed-shell molecules with
non-bosonic corrections [6.3235499003745455]
We introduce a simple correction scheme in the electron correlation model approximated by the geometrical mean of the bosonic terms.
We find our non-bosonic correction method reaches reliable quantum chemistry simulations at least for the tested systems.
arXiv Detail & Related papers (2023-10-11T16:47:45Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Iterative Qubit Coupled Cluster using only Clifford circuits [36.136619420474766]
An ideal state preparation protocol can be characterized by being easily generated classically.
We propose a method that meets these requirements by introducing a variant of the iterative qubit coupled cluster (iQCC)
We demonstrate the algorithm's correctness in ground-state simulations and extend our study to complex systems like the titanium-based compound Ti(C5H5)(CH3)3 with a (20, 20) active space.
arXiv Detail & Related papers (2022-11-18T20:31:10Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Circuit-Depth Reduction of Unitary-Coupled-Cluster Ansatz by Energy
Sorting [3.0998962250161783]
Quantum computation represents a revolutionary approach for solving problems in quantum chemistry.
Due to the limited quantum resources in the current noisy intermediate-scale quantum (NISQ) devices, quantum algorithms for large chemical systems remains a major task.
In this work, we demonstrate that the circuit depth of the unitary coupled cluster (UCC) and UCC-based ansatzes can be significantly reduced by an energy-sorting strategy.
arXiv Detail & Related papers (2021-06-29T09:51:19Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.