Variational Quantum Optimization with Multi-Basis Encodings
- URL: http://arxiv.org/abs/2106.13304v4
- Date: Wed, 26 Jan 2022 07:01:22 GMT
- Title: Variational Quantum Optimization with Multi-Basis Encodings
- Authors: Taylor L. Patti, Jean Kossaifi, Anima Anandkumar, and Susanne F. Yelin
- Abstract summary: We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
- Score: 62.72309460291971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite extensive research efforts, few quantum algorithms for classical
optimization demonstrate realizable quantum advantage. The utility of many
quantum algorithms is limited by high requisite circuit depth and nonconvex
optimization landscapes. We tackle these challenges by introducing a new
variational quantum algorithm that benefits from two innovations: multi-basis
graph encodings and nonlinear activation functions. Our technique results in
increased optimization performance, a factor of two increase in effective
quantum resources, and a quadratic reduction in measurement complexity. While
the classical simulation of many qubits with traditional quantum formalism is
impossible due to its exponential scaling, we mitigate this limitation with
exact circuit representations using factorized tensor rings. In particular, the
shallow circuits permitted by our technique, combined with efficient factorized
tensor-based simulation, enable us to successfully optimize the MaxCut of the
nonlocally connected $512$-vertex DIMACS library graphs on a single GPU. By
improving the performance of quantum optimization algorithms while requiring
fewer quantum resources and utilizing shallower, more error-resistant circuits,
we offer tangible progress for variational quantum optimization.
Related papers
- Symmetry-preserved cost functions for variational quantum eigensolver [0.0]
Hybrid quantum-classical variational algorithms are considered ideal for noisy quantum computers.
We propose encoding symmetry preservation directly into the cost function, enabling more efficient use of Hardware-Efficient Ans"atze.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum Circuit Optimization of Arithmetic circuits using ZX Calculus [0.0]
We propose a technique to optimize quantum arithmetic algorithms by reducing the hardware resources and the number of qubits based on ZX calculus.
We are able to achieve a significant reduction in the number of ancilla bits and T-gates as compared to the originally required numbers to achieve fault-tolerance.
arXiv Detail & Related papers (2023-06-04T05:05:57Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
We introduce a technique that uses quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints, including inequalities.
We show that the dynamics of quantum optimization can be efficiently restricted to the in-constraint subspace on a fault-tolerant quantum computer.
arXiv Detail & Related papers (2022-09-29T18:00:40Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
We explore which quantum algorithms for optimization might be most practical to try out on a small fault-tolerant quantum computer.
Our results discourage the notion that any quantum optimization realizing only a quadratic speedup will achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2020-07-14T22:54:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.