Towards a Measure of Individual Fairness for Deep Learning
- URL: http://arxiv.org/abs/2009.13650v1
- Date: Mon, 28 Sep 2020 21:53:21 GMT
- Title: Towards a Measure of Individual Fairness for Deep Learning
- Authors: Krystal Maughan, Joseph P. Near
- Abstract summary: We show how to compute prediction sensitivity using standard automatic differentiation capabilities present in modern deep learning frameworks.
Preliminary empirical results suggest that prediction sensitivity may be effective for measuring bias in individual predictions.
- Score: 2.4366811507669124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has produced big advances in artificial intelligence, but
trained neural networks often reflect and amplify bias in their training data,
and thus produce unfair predictions. We propose a novel measure of individual
fairness, called prediction sensitivity, that approximates the extent to which
a particular prediction is dependent on a protected attribute. We show how to
compute prediction sensitivity using standard automatic differentiation
capabilities present in modern deep learning frameworks, and present
preliminary empirical results suggesting that prediction sensitivity may be
effective for measuring bias in individual predictions.
Related papers
- Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
for Earth System Science Applications [0.32302664881848275]
Evidential deep learning is a technique that extends parametric deep learning to higher-order distributions.
This study compares the uncertainty derived from evidential neural networks to those obtained from ensembles.
We show evidential deep learning models attaining predictive accuracy rivaling standard methods, while robustly quantifying both sources of uncertainty.
arXiv Detail & Related papers (2023-09-22T23:04:51Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - Fast Uncertainty Estimates in Deep Learning Interatomic Potentials [0.0]
We propose a method to estimate the predictive uncertainty based on a single neural network without the need for an ensemble.
We demonstrate that the quality of the uncertainty estimates matches those obtained from deep ensembles.
arXiv Detail & Related papers (2022-11-17T20:13:39Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Learning Uncertainty with Artificial Neural Networks for Improved
Predictive Process Monitoring [0.114219428942199]
We distinguish two types of learnable uncertainty: model uncertainty due to a lack of training data and noise-induced observational uncertainty.
Our contribution is to apply these uncertainty concepts to predictive process monitoring tasks to train uncertainty-based models to predict the remaining time and outcomes.
arXiv Detail & Related papers (2022-06-13T17:05:27Z) - Towards Auditability for Fairness in Deep Learning [1.052782170493037]
Group fairness metrics can detect when a deep learning model behaves differently for advantaged and disadvantaged groups.
We present smooth prediction sensitivity, an efficiently computed measure of individual fairness for deep learning models.
arXiv Detail & Related papers (2020-11-30T21:28:12Z) - Regularizing Class-wise Predictions via Self-knowledge Distillation [80.76254453115766]
We propose a new regularization method that penalizes the predictive distribution between similar samples.
This results in regularizing the dark knowledge (i.e., the knowledge on wrong predictions) of a single network.
Our experimental results on various image classification tasks demonstrate that the simple yet powerful method can significantly improve the generalization ability.
arXiv Detail & Related papers (2020-03-31T06:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.