Towards Auditability for Fairness in Deep Learning
- URL: http://arxiv.org/abs/2012.00106v1
- Date: Mon, 30 Nov 2020 21:28:12 GMT
- Title: Towards Auditability for Fairness in Deep Learning
- Authors: Ivoline C. Ngong, Krystal Maughan, Joseph P. Near
- Abstract summary: Group fairness metrics can detect when a deep learning model behaves differently for advantaged and disadvantaged groups.
We present smooth prediction sensitivity, an efficiently computed measure of individual fairness for deep learning models.
- Score: 1.052782170493037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group fairness metrics can detect when a deep learning model behaves
differently for advantaged and disadvantaged groups, but even models that score
well on these metrics can make blatantly unfair predictions. We present smooth
prediction sensitivity, an efficiently computed measure of individual fairness
for deep learning models that is inspired by ideas from interpretability in
deep learning. smooth prediction sensitivity allows individual predictions to
be audited for fairness. We present preliminary experimental results suggesting
that smooth prediction sensitivity can help distinguish between fair and unfair
predictions, and that it may be helpful in detecting blatantly unfair
predictions from "group-fair" models.
Related papers
- When Fairness Meets Privacy: Exploring Privacy Threats in Fair Binary Classifiers via Membership Inference Attacks [17.243744418309593]
We propose an efficient MIA method against fairness-enhanced models based on fairness discrepancy results.
We also explore potential strategies for mitigating privacy leakages.
arXiv Detail & Related papers (2023-11-07T10:28:17Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Beyond Confidence: Reliable Models Should Also Consider Atypicality [43.012818086415514]
We investigate the relationship between how atypical(rare) a sample or a class is and the reliability of a model's predictions.
We show that predictions for atypical inputs or atypical classes are more overconfident and have lower accuracy.
We propose that models should use not only confidence but also atypicality to improve uncertainty quantification and performance.
arXiv Detail & Related papers (2023-05-29T17:37:09Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Prediction Sensitivity: Continual Audit of Counterfactual Fairness in
Deployed Classifiers [2.0625936401496237]
Traditional group fairness metrics can miss discrimination against individuals and are difficult to apply after deployment.
We present prediction sensitivity, an approach for continual audit of counterfactual fairness in deployed classifiers.
Our empirical results demonstrate that prediction sensitivity is effective for detecting violations of counterfactual fairness.
arXiv Detail & Related papers (2022-02-09T15:06:45Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
We develop neural models that possess an interpretable inference process for dependency parsing.
Our models adopt instance-based inference, where dependency edges are extracted and labeled by comparing them to edges in a training set.
arXiv Detail & Related papers (2021-09-28T05:30:52Z) - Towards a Measure of Individual Fairness for Deep Learning [2.4366811507669124]
We show how to compute prediction sensitivity using standard automatic differentiation capabilities present in modern deep learning frameworks.
Preliminary empirical results suggest that prediction sensitivity may be effective for measuring bias in individual predictions.
arXiv Detail & Related papers (2020-09-28T21:53:21Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Towards Threshold Invariant Fair Classification [10.317169065327546]
This paper introduces the notion of threshold invariant fairness, which enforces equitable performances across different groups independent of the decision threshold.
Experimental results demonstrate that the proposed methodology is effective to alleviate the threshold sensitivity in machine learning models designed to achieve fairness.
arXiv Detail & Related papers (2020-06-18T16:49:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.