Localize to Classify and Classify to Localize: Mutual Guidance in Object
Detection
- URL: http://arxiv.org/abs/2009.14085v1
- Date: Tue, 29 Sep 2020 15:15:26 GMT
- Title: Localize to Classify and Classify to Localize: Mutual Guidance in Object
Detection
- Authors: Heng Zhang, Elisa Fromont, S\'ebastien Lefevre, Bruno Avignon
- Abstract summary: We propose a new anchor matching criterion guided, during the training phase, by the optimization of both the localization and the classification tasks.
Despite the simplicity of the proposed method, our experiments with different state-of-the-art deep learning architectures on PASCAL VOC and MS COCO datasets demonstrate the effectiveness and generality of our Mutual Guidance strategy.
- Score: 3.6488662460683794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most deep learning object detectors are based on the anchor mechanism and
resort to the Intersection over Union (IoU) between predefined anchor boxes and
ground truth boxes to evaluate the matching quality between anchors and
objects. In this paper, we question this use of IoU and propose a new anchor
matching criterion guided, during the training phase, by the optimization of
both the localization and the classification tasks: the predictions related to
one task are used to dynamically assign sample anchors and improve the model on
the other task, and vice versa. Despite the simplicity of the proposed method,
our experiments with different state-of-the-art deep learning architectures on
PASCAL VOC and MS COCO datasets demonstrate the effectiveness and generality of
our Mutual Guidance strategy.
Related papers
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Learning Classifiers of Prototypes and Reciprocal Points for Universal
Domain Adaptation [79.62038105814658]
Universal Domain aims to transfer the knowledge between datasets by handling two shifts: domain-shift and categoryshift.
Main challenge is correctly distinguishing the unknown target samples while adapting the distribution of known class knowledge from source to target.
Most existing methods approach this problem by first training the target adapted known and then relying on the single threshold to distinguish unknown target samples.
arXiv Detail & Related papers (2022-12-16T09:01:57Z) - Aligning Pretraining for Detection via Object-Level Contrastive Learning [57.845286545603415]
Image-level contrastive representation learning has proven to be highly effective as a generic model for transfer learning.
We argue that this could be sub-optimal and thus advocate a design principle which encourages alignment between the self-supervised pretext task and the downstream task.
Our method, called Selective Object COntrastive learning (SoCo), achieves state-of-the-art results for transfer performance on COCO detection.
arXiv Detail & Related papers (2021-06-04T17:59:52Z) - Modulating Localization and Classification for Harmonized Object
Detection [40.82723262074911]
We propose a mutual learning framework to modulate the two tasks.
In particular, the two tasks are forced to learn from each other with a novel mutual labeling strategy.
We achieve a significant performance gain over the baseline detectors on the COCO dataset.
arXiv Detail & Related papers (2021-03-16T10:36:02Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z) - Distilling Knowledge from Refinement in Multiple Instance Detection
Networks [0.0]
Weakly supervised object detection (WSOD) aims to tackle the object detection problem using only labeled image categories as supervision.
We present an adaptive supervision aggregation function that dynamically changes the aggregation criteria for selecting boxes related to one of the ground-truth classes, background, or even ignored during the generation of each refinement module supervision.
arXiv Detail & Related papers (2020-04-23T02:49:40Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
We study the problem of learning localization model on target classes with weakly supervised image labels.
In this work, we argue that learning only an objectness function is a weak form of knowledge transfer.
Experiments on the COCO and ILSVRC 2013 detection datasets show that the performance of the localization model improves significantly with the inclusion of pairwise similarity function.
arXiv Detail & Related papers (2020-03-18T17:53:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.