論文の概要: Towards Adaptive Semantic Segmentation by Progressive Feature Refinement
- arxiv url: http://arxiv.org/abs/2009.14420v1
- Date: Wed, 30 Sep 2020 04:17:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 23:53:59.313706
- Title: Towards Adaptive Semantic Segmentation by Progressive Feature Refinement
- Title(参考訳): 漸進的特徴洗練による適応的意味セグメンテーションに向けて
- Authors: Bin Zhang, Shengjie Zhao, Rongqing Zhang
- Abstract要約: セグメンテーションネットワークの転送可能性を高めるために,ドメイン逆学習とともに,革新的なプログレッシブな特徴改善フレームワークを提案する。
その結果、ソース・ドメイン・イメージで訓練されたセグメンテーション・モデルは、大幅な性能劣化を伴わずにターゲット・ドメインに転送できる。
- 参考スコア(独自算出の注目度): 16.40758125170239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As one of the fundamental tasks in computer vision, semantic segmentation
plays an important role in real world applications. Although numerous deep
learning models have made notable progress on several mainstream datasets with
the rapid development of convolutional networks, they still encounter various
challenges in practical scenarios. Unsupervised adaptive semantic segmentation
aims to obtain a robust classifier trained with source domain data, which is
able to maintain stable performance when deployed to a target domain with
different data distribution. In this paper, we propose an innovative
progressive feature refinement framework, along with domain adversarial
learning to boost the transferability of segmentation networks. Specifically,
we firstly align the multi-stage intermediate feature maps of source and target
domain images, and then a domain classifier is adopted to discriminate the
segmentation output. As a result, the segmentation models trained with source
domain images can be transferred to a target domain without significant
performance degradation. Experimental results verify the efficiency of our
proposed method compared with state-of-the-art methods.
- Abstract(参考訳): コンピュータビジョンにおける基本的なタスクの1つとして、セマンティックセグメンテーションは現実世界のアプリケーションにおいて重要な役割を果たす。
多くのディープラーニングモデルは、畳み込みネットワークの急速な開発によって、いくつかの主流データセットで顕著な進歩を遂げてきたが、実際的なシナリオでは、さまざまな課題に直面している。
教師なし適応セマンティックセグメンテーションは、ソースドメインデータで訓練された堅牢な分類器を得ることを目的としており、異なるデータ分布を持つターゲットドメインにデプロイされた場合、安定したパフォーマンスを維持することができる。
本稿では,セグメンテーションネットワークの転送性を高めるために,ドメイン逆学習とともに,革新的特徴リファインメントフレームワークを提案する。
具体的には、まず、ソースおよびターゲットドメインイメージの多段階中間特徴マップを調整し、次に、セグメンテーション出力を識別するドメイン分類器を採用する。
その結果、ソースドメインイメージでトレーニングされたセグメンテーションモデルは、パフォーマンスが著しく低下することなく、ターゲットドメインに転送できる。
提案手法の有効性を最先端法と比較し, 実験により検証した。
関連論文リスト
- PiPa++: Towards Unification of Domain Adaptive Semantic Segmentation via Self-supervised Learning [34.786268652516355]
教師なしドメイン適応セグメンテーションは、それらのドメインのラベル付きデータに頼ることなく、ターゲットドメイン上のモデルのセグメンテーション精度を向上させることを目的としている。
ソースドメイン(ラベル付きデータが利用可能な場所)とターゲットドメイン(ラベルなしデータのみが存在する場所)の特徴表現の整合を図る。
論文 参考訳(メタデータ) (2024-07-24T08:53:29Z) - Joint semi-supervised and contrastive learning enables zero-shot domain-adaptation and multi-domain segmentation [1.5393913074555419]
SegCLRは、さまざまなドメインにまたがってボリューム画像を分割するために設計された汎用的なフレームワークである。
総合評価により,SegCLRの優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-08T18:10:59Z) - MRFP: Learning Generalizable Semantic Segmentation from Sim-2-Real with Multi-Resolution Feature Perturbation [2.0293118701268154]
本稿では,ドメイン固有の細粒度特徴と粗い特徴の摂動スタイルをランダム化するための,MRFP(Multi Resolution Feature Perturbation)手法を提案する。
MRFPは最先端のディープニューラルネットワークで、シミュレーションから実際のセマンティックセグメンテーションのための堅牢なドメイン不変機能を学ぶのに役立つ。
論文 参考訳(メタデータ) (2023-11-30T08:02:49Z) - Prompting Diffusion Representations for Cross-Domain Semantic
Segmentation [101.04326113360342]
拡散事前学習は、セマンティックセグメンテーションのための並外れた領域一般化結果を達成する。
本研究では,シーンプロンプトとプロンプトランダム化戦略を導入し,セグメンテーションヘッドを訓練する際に,ドメイン不変情報をさらに混乱させる。
論文 参考訳(メタデータ) (2023-07-05T09:28:25Z) - Generalized Semantic Segmentation by Self-Supervised Source Domain
Projection and Multi-Level Contrastive Learning [79.0660895390689]
ソースドメインでトレーニングされたディープネットワークは、未確認のターゲットドメインデータでテストした場合、パフォーマンスが低下している。
汎用セマンティックセグメンテーションのためのドメイン・プロジェクションとコントラシブ・ラーニング(DPCL)手法を提案する。
論文 参考訳(メタデータ) (2023-03-03T13:07:14Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - Multi-Anchor Active Domain Adaptation for Semantic Segmentation [25.93409207335442]
教師なしのドメイン適応は、手動アノテーションの集中的なワークロードを軽減する効果的なアプローチであることが証明されている。
本稿では,セマンティックセグメンテーションタスクに関するドメイン適応を支援するために,マルチアンカーベースのアクティブラーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-08-18T07:33:13Z) - Coarse to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring
Network [58.05473757538834]
本稿では,ドメイン間のギャップを粗い粒度から細かな粒度に埋める新しい逆スコアリングネットワーク (ASNet) を提案する。
3組のマイグレーション実験により,提案手法が最先端のカウント性能を実現することを示す。
論文 参考訳(メタデータ) (2021-07-27T14:47:24Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z) - Learning to adapt class-specific features across domains for semantic
segmentation [36.36210909649728]
本論文では,クラス情報毎に考慮し,ドメイン間の特徴を適応させることを学習する新しいアーキテクチャを提案する。
我々は最近導入されたStarGANアーキテクチャを画像翻訳のバックボーンとして採用している。
論文 参考訳(メタデータ) (2020-01-22T23:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。