Spectral Embedding of Graph Networks
- URL: http://arxiv.org/abs/2009.14441v1
- Date: Wed, 30 Sep 2020 04:59:10 GMT
- Title: Spectral Embedding of Graph Networks
- Authors: Shay Deutsch, Stefano Soatto
- Abstract summary: We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure.
The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation.
- Score: 76.27138343125985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an unsupervised graph embedding that trades off local node
similarity and connectivity, and global structure. The embedding is based on a
generalized graph Laplacian, whose eigenvectors compactly capture both network
structure and neighborhood proximity in a single representation. The key idea
is to transform the given graph into one whose weights measure the centrality
of an edge by the fraction of the number of shortest paths that pass through
that edge, and employ its spectral proprieties in the representation. Testing
the resulting graph network representation shows significant improvement over
the sate of the art in data analysis tasks including social networks and
material science. We also test our method on node classification from the
human-SARS CoV-2 protein-protein interactome.
Related papers
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
We propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification.
We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features.
Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone.
arXiv Detail & Related papers (2024-01-01T13:44:16Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The GTGAN learns effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task.
arXiv Detail & Related papers (2023-03-14T20:35:45Z) - SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic
Representative Graphs [4.550112751061436]
We describe SynGraphy, a method for visually summarising the structure of large network datasets.
It works by drawing smaller graphs generated to have similar structural properties to the input graphs.
arXiv Detail & Related papers (2023-02-15T16:00:15Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
We introduce the Graph Sylvester Embedding (GSE), an unsupervised graph representation of local similarity, connectivity, and global structure.
GSE uses the solution of the Sylvester equation to capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2022-05-07T04:11:23Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
We introduce self-supervised learning mechanism to graph representation learning.
We propose a novel Self-supervised Consensus Representation Learning framework.
Our proposed SCRL method treats graph from two perspectives: topology graph and feature graph.
arXiv Detail & Related papers (2021-08-10T07:53:09Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.