Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification
- URL: http://arxiv.org/abs/2106.13952v2
- Date: Thu, 6 Apr 2023 16:50:23 GMT
- Title: Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification
- Authors: Di Wang, Bo Du, Liangpei Zhang
- Abstract summary: Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
- Score: 50.899576891296235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks have been widely applied to hyperspectral image
classification. However, traditional convolutions can not effectively extract
features for objects with irregular distributions. Recent methods attempt to
address this issue by performing graph convolutions on spatial topologies, but
fixed graph structures and local perceptions limit their performances. To
tackle these problems, in this paper, different from previous approaches, we
perform the superpixel generation on intermediate features during network
training to adaptively produce homogeneous regions, obtain graph structures,
and further generate spatial descriptors, which are served as graph nodes.
Besides spatial objects, we also explore the graph relationships between
channels by reasonably aggregating channels to generate spectral descriptors.
The adjacent matrices in these graph convolutions are obtained by considering
the relationships among all descriptors to realize global perceptions. By
combining the extracted spatial and spectral graph features, we finally obtain
a spectral-spatial graph reasoning network (SSGRN). The spatial and spectral
parts of SSGRN are separately called spatial and spectral graph reasoning
subnetworks. Comprehensive experiments on four public datasets demonstrate the
competitiveness of the proposed methods compared with other state-of-the-art
graph convolution-based approaches.
Related papers
- Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
Convolutional neural networks (CNNs) have achieved remarkable performance in hyperspectral image (HSI) classification.
We propose a spectral graph reasoning network (SGR) learning framework comprising two crucial modules.
Experiments on two HSI datasets demonstrate that the proposed architecture can significantly improve the classification accuracy.
arXiv Detail & Related papers (2024-07-02T20:29:23Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
Conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs.
Here we show this traditional reliance on the graph Fourier transform to be superfluous.
We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based.
arXiv Detail & Related papers (2023-10-03T17:42:09Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
Graph Representation Learning (GRL) has become essential for modern graph data mining and learning tasks.
While Graph Neural Networks (GNNs) have been used in state-of-the-art GRL architectures, they have been shown to suffer from over smoothing.
We propose PointSpectrum, a spectral method that incorporates a set equivariant network to account for a graph's structure.
arXiv Detail & Related papers (2021-09-06T10:59:11Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
We introduce the Spectral Graph Network, which applies message passing to both the spatial and spectral domains.
Our results show that the Spectral GN promotes efficient training, reaching high performance with fewer training iterations despite having more parameters.
arXiv Detail & Related papers (2020-12-31T21:33:17Z) - Spectral Embedding of Graph Networks [76.27138343125985]
We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure.
The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2020-09-30T04:59:10Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Bridging the Gap Between Spectral and Spatial Domains in Graph Neural
Networks [8.563354084119062]
We show some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain.
The proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain.
arXiv Detail & Related papers (2020-03-26T01:49:24Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
Graph neural networks (GNNs) have been used effectively in different applications involving the processing of signals on irregular structures modeled by graphs.
We propose a new strategy for pooling and sampling on GNNs using graphons which preserves the spectral properties of the graph.
arXiv Detail & Related papers (2020-03-03T21:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.