Disruption in the Chinese E-Commerce During COVID-19
- URL: http://arxiv.org/abs/2009.14605v2
- Date: Tue, 27 Oct 2020 14:17:52 GMT
- Title: Disruption in the Chinese E-Commerce During COVID-19
- Authors: Yuan Yuan and Muzhi Guan and Zhilun Zhou and Sundong Kim and Meeyoung
Cha and Depeng Jin and Yong Li
- Abstract summary: The recent outbreak of the novel coronavirus (COVID-19) has infected millions of citizens worldwide and claimed many lives.
This paper examines its impact on the Chinese e-commerce market by analyzing behavioral changes seen from a large online shopping platform.
We present a consumer demand prediction method by encompassing the epidemic statistics and behavioral features for COVID-19 related products.
- Score: 27.593450217418777
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recent outbreak of the novel coronavirus (COVID-19) has infected millions
of citizens worldwide and claimed many lives. This paper examines its impact on
the Chinese e-commerce market by analyzing behavioral changes seen from a large
online shopping platform. We first conduct a time series analysis to identify
product categories that faced the most extensive disruptions. The time-lagged
analysis shows that behavioral patterns seen in shopping actions are highly
responsive to epidemic development. Based on these findings, we present a
consumer demand prediction method by encompassing the epidemic statistics and
behavioral features for COVID-19 related products. Experiment results
demonstrate that our predictions outperform existing baselines and further
extend to the long-term and province-level forecasts. We discuss how our market
analysis and prediction can help better prepare for future pandemics by gaining
an extra time to launch preventive steps.
Related papers
- Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - #StayHome or #Marathon? Social Media Enhanced Pandemic Surveillance on
Spatial-temporal Dynamic Graphs [23.67939019353524]
COVID-19 has caused lasting damage to almost every domain in public health, society, and economy.
Existing studies rely on the aggregation of traditional statistical models and epidemic spread theory.
We propose a novel framework, Social Media enhAnced pandemic knowledge based on the extracted events and relationships.
arXiv Detail & Related papers (2021-08-08T15:46:05Z) - The challenges and realities of retailing in a COVID-19 world:
Identifying trending and Vital During Crisis keywords during Covid-19 using
Machine Learning (Austria as a case study) [0.0]
It is recommended to opt for forecasting against trending based benchmark because auditing a future forecast puts more focus on seasonality.
The forecasting models provide with end-to-end, real time oversight of the entire supply chain.
arXiv Detail & Related papers (2021-05-10T18:31:45Z) - Impact of Interventional Policies Including Vaccine on Covid-19
Propagation and Socio-Economic Factors [0.7874708385247353]
This study aims to provide a predictive analytics framework to model, predict and simulate COVID-19 propagation and socio-economic impact.
We have leveraged a recently launched open-source COVID-19 big data platform and used published research to find potentially relevant variables.
An advanced machine learning pipeline has been developed armed with a self-evolving model, deployed on a modern machine learning architecture.
arXiv Detail & Related papers (2021-01-11T15:08:07Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Predicting seasonal influenza using supermarket retail records [59.18952050885709]
We consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets.
We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence.
arXiv Detail & Related papers (2020-12-08T16:30:43Z) - Backtesting the predictability of COVID-19 [0.0]
We use historical data of COVID-19 infections from 253 regions from the period of 22nd January 2020 until 22nd June 2020.
Prediction errors are substantially higher in early stages of the pandemic, resulting from limited data.
The more confirmed cases a country exhibits at any point in time, the lower the error in forecasting future confirmed cases.
arXiv Detail & Related papers (2020-07-22T13:18:00Z) - Effectiveness and Compliance to Social Distancing During COVID-19 [72.94965109944707]
We use a detailed set of mobility data to evaluate the impact that stay-at-home orders had on the spread of COVID-19 in the US.
We show that there is a unidirectional Granger causality, from the median percentage of time spent daily at home to the daily number of COVID-19-related deaths with a lag of 2 weeks.
arXiv Detail & Related papers (2020-06-23T03:36:19Z) - A machine learning methodology for real-time forecasting of the
2019-2020 COVID-19 outbreak using Internet searches, news alerts, and
estimates from mechanistic models [53.900779250589814]
Our method is able to produce stable and accurate forecasts 2 days ahead of current time.
Our model's predictive power outperforms a collection of baseline models in 27 out of the 32 Chinese provinces.
arXiv Detail & Related papers (2020-04-08T14:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.