Efficient texture-aware multi-GAN for image inpainting
- URL: http://arxiv.org/abs/2009.14721v2
- Date: Sat, 13 Feb 2021 15:19:43 GMT
- Title: Efficient texture-aware multi-GAN for image inpainting
- Authors: Mohamed Abbas Hedjazi, Yakup Genc
- Abstract summary: Recent GAN-based (Generative adversarial networks) inpainting methods show remarkable improvements.
We propose a multi-GAN architecture improving both the performance and rendering efficiency.
- Score: 5.33024001730262
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent GAN-based (Generative adversarial networks) inpainting methods show
remarkable improvements and generate plausible images using multi-stage
networks or Contextual Attention Modules (CAM). However, these techniques
increase the model complexity limiting their application in low-resource
environments. Furthermore, they fail in generating high-resolution images with
realistic texture details due to the GAN stability problem. Motivated by these
observations, we propose a multi-GAN architecture improving both the
performance and rendering efficiency. Our training schema optimizes the
parameters of four progressive efficient generators and discriminators in an
end-to-end manner. Filling in low-resolution images is less challenging for
GANs due to the small dimensional space. Meanwhile, it guides higher resolution
generators to learn the global structure consistency of the image. To constrain
the inpainting task and ensure fine-grained textures, we adopt an LBP-based
loss function to minimize the difference between the generated and the ground
truth textures. We conduct our experiments on Places2 and CelebHQ datasets.
Qualitative and quantitative results show that the proposed method not only
performs favorably against state-of-the-art algorithms but also speeds up the
inference time.
Related papers
- Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
Super-resolution algorithms transform one or more sets of low-resolution images captured from the same scene into high-resolution images.
The extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms.
The objective is to recover high-quality, high-resolution images from low-resolution images.
arXiv Detail & Related papers (2024-07-18T06:50:39Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - TcGAN: Semantic-Aware and Structure-Preserved GANs with Individual
Vision Transformer for Fast Arbitrary One-Shot Image Generation [11.207512995742999]
One-shot image generation (OSG) with generative adversarial networks that learn from the internal patches of a given image has attracted world wide attention.
We propose a novel structure-preserved method TcGAN with individual vision transformer to overcome the shortcomings of the existing one-shot image generation methods.
arXiv Detail & Related papers (2023-02-16T03:05:59Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - High-Frequency aware Perceptual Image Enhancement [0.08460698440162888]
We introduce a novel deep neural network suitable for multi-scale analysis and propose efficient model-agnostic methods.
Our model can be applied to multi-scale image enhancement problems including denoising, deblurring and single image super-resolution.
arXiv Detail & Related papers (2021-05-25T07:33:14Z) - Best-Buddy GANs for Highly Detailed Image Super-Resolution [71.13466303340192]
We consider the single image super-resolution (SISR) problem, where a high-resolution (HR) image is generated based on a low-resolution (LR) input.
Most methods along this line rely on a predefined single-LR-single-HR mapping, which is not flexible enough for the SISR task.
We propose best-buddy GANs (Beby-GAN) for rich-detail SISR. Relaxing the immutable one-to-one constraint, we allow the estimated patches to dynamically seek the best supervision.
arXiv Detail & Related papers (2021-03-29T02:58:27Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.