Collective modes and superfluidity of a two-dimensional ultracold Bose
gas
- URL: http://arxiv.org/abs/2010.00013v1
- Date: Wed, 30 Sep 2020 18:00:01 GMT
- Title: Collective modes and superfluidity of a two-dimensional ultracold Bose
gas
- Authors: Vijay Pal Singh and Ludwig Mathey
- Abstract summary: We present how a two-dimensional Bose gas responds to a moving lattice potential.
In particular we discuss how the induced heating rate depends on the interaction strength and the temperature.
This gives a novel insight into the two regimes of Bose gases, defined via the hierarchy of sounds modes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The collective modes of a quantum liquid shape and impact its properties
profoundly, including its emergent phenomena such as superfluidity. Here we
present how a two-dimensional Bose gas responds to a moving lattice potential.
In particular we discuss how the induced heating rate depends on the
interaction strength and the temperature. This study is motivated by the recent
measurements of Sobirey {\it et al.} arXiv:2005.07607 (2020), for which we
provide a quantitative understanding. Going beyond the existing measurements,
we demonstrate that this probing method allows to identify first and second
sound in quantum liquids. We show that the two sound modes undergo
hybridization as a function of interaction strength, which we propose to detect
experimentally. This gives a novel insight into the two regimes of Bose gases,
defined via the hierarchy of sounds modes.
Related papers
- Quantum droplets in two-dimensional Bose mixtures at finite temperature [0.0]
We investigate the formation of quantum droplets at finite temperature in attractive Bose mixtures.
By means of exact path-integral Monte Carlo methods we determine the equilibrium density of the gas and the liquid.
We find that the superfluid response develops suddenly, following the density jump from the gas to the liquid state.
arXiv Detail & Related papers (2024-05-15T14:20:31Z) - Quantum kinetics of quenched two-dimensional Bose superfluids [0.0]
We study theoretically the non-equilibrium dynamics of a two-dimensional (2D) uniform Bose superfluid following a quantum quench.
We derive quantum kinetic equations for the low-energy phononic excitations of the system and characterize both their normal and anomalous momentum distributions.
arXiv Detail & Related papers (2023-02-21T15:39:49Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Influence of polarization and the environment on wave-particle duality [0.0]
Wave-particle duality ascribes mutually exclusive behaviors to quantum systems that cannot be observed simultaneously.
Here, we use quantum information-theoretic tools to derive quantifiers of two properties, which account for the combined influence of path probability and polarization.
The derived quantities can work as probes in the study of open quantum dynamics.
arXiv Detail & Related papers (2022-04-29T20:41:26Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - First and second sound in a compressible 3D Bose fluid [0.0]
We study the two sounds in the opposite regime of a highly compressible fluid, using an ultracold $39$K Bose gas.
We find agreement with the hydrodynamic theory, where first and second sound involve density oscillations dominated by, respectively, thermal and condensed atoms.
arXiv Detail & Related papers (2021-12-29T18:59:31Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.