Computing Graph Neural Networks: A Survey from Algorithms to
Accelerators
- URL: http://arxiv.org/abs/2010.00130v3
- Date: Fri, 23 Jul 2021 09:39:35 GMT
- Title: Computing Graph Neural Networks: A Survey from Algorithms to
Accelerators
- Authors: Sergi Abadal, Akshay Jain, Robert Guirado, Jorge L\'opez-Alonso,
Eduard Alarc\'on
- Abstract summary: Graph Neural Networks (GNNs) have exploded onto the machine learning scene in recent years owing to their capability to model and learn from graph-structured data.
This paper aims to make two main contributions: a review of the field of GNNs is presented from the perspective of computing.
An in-depth analysis of current software and hardware acceleration schemes is provided.
- Score: 2.491032752533246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have exploded onto the machine learning scene in
recent years owing to their capability to model and learn from graph-structured
data. Such an ability has strong implications in a wide variety of fields whose
data is inherently relational, for which conventional neural networks do not
perform well. Indeed, as recent reviews can attest, research in the area of
GNNs has grown rapidly and has lead to the development of a variety of GNN
algorithm variants as well as to the exploration of groundbreaking applications
in chemistry, neurology, electronics, or communication networks, among others.
At the current stage of research, however, the efficient processing of GNNs is
still an open challenge for several reasons. Besides of their novelty, GNNs are
hard to compute due to their dependence on the input graph, their combination
of dense and very sparse operations, or the need to scale to huge graphs in
some applications. In this context, this paper aims to make two main
contributions. On the one hand, a review of the field of GNNs is presented from
the perspective of computing. This includes a brief tutorial on the GNN
fundamentals, an overview of the evolution of the field in the last decade, and
a summary of operations carried out in the multiple phases of different GNN
algorithm variants. On the other hand, an in-depth analysis of current software
and hardware acceleration schemes is provided, from which a hardware-software,
graph-aware, and communication-centric vision for GNN accelerators is
distilled.
Related papers
- Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - A Survey on Graph Neural Network Acceleration: Algorithms, Systems, and
Customized Hardware [30.525912505620685]
Graph neural networks (GNNs) are emerging for machine learning research on graph-structured data.
GNNs achieve state-of-the-art performance on many tasks, but they face scalability challenges when it comes to real-world applications.
We provide a taxonomy of GNN acceleration, review the existing approaches, and suggest future research directions.
arXiv Detail & Related papers (2023-06-24T20:20:45Z) - The Evolution of Distributed Systems for Graph Neural Networks and their
Origin in Graph Processing and Deep Learning: A Survey [17.746899445454048]
Graph Neural Networks (GNNs) are an emerging research field.
GNNs can be applied to various domains including recommendation systems, computer vision, natural language processing, biology and chemistry.
We aim to fill this gap by summarizing and categorizing important methods and techniques for large-scale GNN solutions.
arXiv Detail & Related papers (2023-05-23T09:22:33Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Characterizing the Efficiency of Graph Neural Network Frameworks with a
Magnifying Glass [10.839902229218577]
Graph neural networks (GNNs) have received great attention due to their success in various graph-related learning tasks.
Recent GNNs have been developed with different graph sampling techniques for mini-batch training of GNNs on large graphs.
It is unknown how much the frameworks are 'eco-friendly' from a green computing perspective.
arXiv Detail & Related papers (2022-11-06T04:22:19Z) - Distributed Graph Neural Network Training: A Survey [51.77035975191926]
Graph neural networks (GNNs) are a type of deep learning models that are trained on graphs and have been successfully applied in various domains.
Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs.
As a remedy, distributed computing becomes a promising solution of training large-scale GNNs.
arXiv Detail & Related papers (2022-11-01T01:57:00Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - IGNNITION: Bridging the Gap Between Graph Neural Networks and Networking
Systems [4.1591055164123665]
We present IGNNITION, a novel open-source framework that enables fast prototyping of Graph Neural Networks (GNNs) for networking systems.
IGNNITION is based on an intuitive high-level abstraction that hides the complexity behind GNNs.
Our results show that the GNN models produced by IGNNITION are equivalent in terms of accuracy and performance to their native implementations.
arXiv Detail & Related papers (2021-09-14T14:28:21Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
We focus on Graph Neural Networks (GNNs) that have found great success in tasks such as node or edge classification and link prediction.
New approaches for processing larger networks are needed to advance graph techniques.
We study how GNNs could be parallelized using existing tools and frameworks that are known to be successful in the deep learning community.
arXiv Detail & Related papers (2020-12-20T04:20:38Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.