Automatic Relation-aware Graph Network Proliferation
- URL: http://arxiv.org/abs/2205.15678v1
- Date: Tue, 31 May 2022 10:38:04 GMT
- Title: Automatic Relation-aware Graph Network Proliferation
- Authors: Shaofei Cai, Liang Li, Xinzhe Han, Jiebo Luo, Zheng-Jun Zha, Qingming
Huang
- Abstract summary: We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
- Score: 182.30735195376792
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural architecture search has sparked much attention as Graph Neural
Networks (GNNs) have shown powerful reasoning capability in many relational
tasks. However, the currently used graph search space overemphasizes learning
node features and neglects mining hierarchical relational information.
Moreover, due to diverse mechanisms in the message passing, the graph search
space is much larger than that of CNNs. This hinders the straightforward
application of classical search strategies for exploring complicated graph
search space. We propose Automatic Relation-aware Graph Network Proliferation
(ARGNP) for efficiently searching GNNs with a relation-guided message passing
mechanism. Specifically, we first devise a novel dual relation-aware graph
search space that comprises both node and relation learning operations. These
operations can extract hierarchical node/relational information and provide
anisotropic guidance for message passing on a graph. Second, analogous to cell
proliferation, we design a network proliferation search paradigm to
progressively determine the GNN architectures by iteratively performing network
division and differentiation. The experiments on six datasets for four graph
learning tasks demonstrate that GNNs produced by our method are superior to the
current state-of-the-art hand-crafted and search-based GNNs. Codes are
available at https://github.com/phython96/ARGNP.
Related papers
- Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search [33.9052190473029]
Subgraph Matching is a core operation in graph database search, biomedical analysis, social group finding, etc.
In this paper, we propose a novel encoder-decoder neural network architecture to dynamically compute the matching information between the query and the target graphs.
Experiments on five large real-world target graphs show that N-BLS can significantly improve the subgraph matching performance.
arXiv Detail & Related papers (2022-07-21T04:47:21Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Edge-featured Graph Neural Architecture Search [131.4361207769865]
We propose Edge-featured Graph Neural Architecture Search to find the optimal GNN architecture.
Specifically, we design rich entity and edge updating operations to learn high-order representations.
We show EGNAS can search better GNNs with higher performance than current state-of-the-art human-designed and searched-based GNNs.
arXiv Detail & Related papers (2021-09-03T07:53:18Z) - Rethinking Graph Neural Network Search from Message-passing [120.62373472087651]
This paper proposes Graph Neural Architecture Search (GNAS) with novel-designed search space.
We design Graph Neural Architecture Paradigm (GAP) with tree-topology computation procedure and two types of fine-grained atomic operations.
Experiments show that our GNAS can search for better GNNs with multiple message-passing mechanisms and optimal message-passing depth.
arXiv Detail & Related papers (2021-03-26T06:10:41Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
We focus on Graph Neural Networks (GNNs) that have found great success in tasks such as node or edge classification and link prediction.
New approaches for processing larger networks are needed to advance graph techniques.
We study how GNNs could be parallelized using existing tools and frameworks that are known to be successful in the deep learning community.
arXiv Detail & Related papers (2020-12-20T04:20:38Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.