A perfect X-ray beam splitter and its applications to time-domain
interferometry and quantum optics exploiting free-electron lasers
- URL: http://arxiv.org/abs/2010.00230v2
- Date: Wed, 19 Jan 2022 13:45:53 GMT
- Title: A perfect X-ray beam splitter and its applications to time-domain
interferometry and quantum optics exploiting free-electron lasers
- Authors: S. Reiche, G. Knopp, B. Pedrini, E. Prat, G. Aeppli and S. Gerber
- Abstract summary: X-ray free-electron lasers (FEL) deliver ultrabright X-ray pulses, but not the sequences of phase-coherent pulses required for time-domain interferometry and control of quantum states.
We describe an FEL mode based on selective electron degradation bunch and transverse beam shaping in the accelerator, combined with a self-seeded photon emission scheme.
Instead of splitting the photon pulses after their generation by the FEL, we split the electron bunch in the accelerator, prior to photon generation, to obtain phase-locked X-ray pulses with sub-femtosecond duration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: X-ray free-electron lasers (FEL) deliver ultrabright X-ray pulses, but not
the sequences of phase-coherent pulses required for time-domain interferometry
and control of quantum states. For conventional split-and-delay schemes to
produce such sequences the challenge stems from extreme stability requirements
when splitting Angstrom wavelength beams where tiniest path length differences
introduce phase jitter. We describe an FEL mode based on selective electron
bunch degradation and transverse beam shaping in the accelerator, combined with
a self-seeded photon emission scheme. Instead of splitting the photon pulses
after their generation by the FEL, we split the electron bunch in the
accelerator, prior to photon generation, to obtain phase-locked X-ray pulses
with sub-femtosecond duration. Time-domain interferometry becomes possible,
enabling the concomitant program of classical and quantum optics experiments
with X-rays. The scheme leads to new scientific benefits of cutting-edge FELs
with attosecond and/or high-repetition rate capabilities, ranging from the
X-ray analog of Fourier transform infrared spectroscopy to damage-free
measurements.
Related papers
- Quantum pathways interference in laser-induced electron diffraction revealed by a semiclassical method [0.0]
We develop a novel method for strong-laser-field physics based on the combination of the semiclassical Herman-Kluk propagator and the strong-field approximation.
Our results can be used to extend current capabilities of the laser-induced electron diffraction and other ultrafast imaging and strong-field spectroscopic techniques.
arXiv Detail & Related papers (2024-08-22T20:23:37Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
This paper describes theoretical and experimental methods for estimating the degree of phase randomization in a gain-switched laser.
We show that the interference signal remains quantum in nature even in the presence of classical phase drift in the interferometer.
arXiv Detail & Related papers (2022-09-20T14:07:39Z) - Variable electro-optic shearing interferometry for ultrafast
single-photon-level pulse characterization [0.0]
We introduce a pulse characterisation scheme that maps the magnitude of its short-time Fourier transform.
Our method is based on introducing a series of controlled time and frequency shifts.
We successfully reconstructed the spectral phase and amplitude of a single-photon-level pulse.
arXiv Detail & Related papers (2022-07-28T12:45:08Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Toward AI-enhanced online-characterization and shaping of ultrashort
X-ray free-electron laser pulses [0.9743237458721049]
Photoelectron angular streaking has successfully retrieved the exact time-energy structure of XFEL pulses on a single-shot basis.
We show how this technique can be leveraged from its proof-of-principle stage toward routine diagnostics at XFELs.
arXiv Detail & Related papers (2021-08-31T17:04:47Z) - Vacuum birefringence at x-ray free-electron lasers [0.0]
We study the perspectives of measuring the phenomenon of vacuum birefringence predicted by quantum electrodynamics using an x-ray free-electron laser (XFEL) alone.
arXiv Detail & Related papers (2021-05-28T14:25:50Z) - Continuum-electron interferometry for enhancement of photoelectron
circular dichroism and measurement of bound, free, and mixed contributions to
chiral response [39.58317527488534]
We develop photoelectron interferometry based on laser-assisted extreme ultraviolet ionization for flexible and robust control of photoelectron circular dichroism in randomly oriented chiral molecules.
A comb of XUV photons ionizes a sample of chiral molecules in the presence of a time-delayed infrared or visible laser pulse promoting interferences between components of the XUV-ionized photoelectron wave packet.
arXiv Detail & Related papers (2021-04-15T15:20:57Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.