Quantum Optical Electron Pulse Shaper
- URL: http://arxiv.org/abs/2507.15573v1
- Date: Mon, 21 Jul 2025 12:56:11 GMT
- Title: Quantum Optical Electron Pulse Shaper
- Authors: Nelin Laštovičková Streshkova, Martin Kozák,
- Abstract summary: We show a method that enables near arbitrary light-based shaping of electron wave packets in the time domain.<n>Results show that few femtosecond time durations can be achieved without additional spectral broadening of the electron wave packet.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coherent control of ultrafast quantum phenomena benefits from the pulse-shaping capabilities allowing to modulate the envelope and instantaneous phase of optical fields on femtosecond time scales. While such control is available for optical fields, an analogy of a pulse shaper for freely propagating electrons is lacking. In this study, we theoretically demonstrate a method that enables near arbitrary light-based shaping of electron wave packets in the time domain. The method is based on the quantum phase modulation of electron waves by coherent light with time-dependent frequency leading to generation of spectrally separated electron energy side bands with shaped time-energy profiles and envelopes. Our results show that few femtosecond time durations can be achieved without additional spectral broadening of the electron wave packet, allowing one to reach the combination of high time, spatial, and spectral resolutions in ultrafast imaging and diffraction experiments with pulsed electron beams.
Related papers
- Electro-optic sampling of the electric-field operator for ultrabroadband pulses of Gaussian quantum light [2.058673763571808]
In the mid-infrared spectral range, electro-optic sampling provides a means to characterize quantum fluctuations in the electric field of light pulses.<n>We present a protocol based on the two-port EOS technique that enables the complete characterization of multimode quantum light.<n>Our findings establish the two-port EOS technique as a versatile tool for characterizing ultrafast multimode quantum light.
arXiv Detail & Related papers (2025-06-02T14:41:44Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Sequential phase-locked optical gating of free electrons [0.0]
We numerically explore the potential of sequential interactions between slow electrons and localized dipolar plasmons.
We show that a sequential phase-locking method can be employed to precisely manipulate the longitudinal and transverse recoil of the electron wavepacket.
arXiv Detail & Related papers (2023-08-29T13:54:50Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Optical Modulation of Electron Beams in Free Space [0.0]
We show that monochromatic optical fields focused in vacuum can be used to correct electron beam aberrations and produce selected focal shapes.
The required light intensities are attainable in currently available ultrafast electron microscope setups.
arXiv Detail & Related papers (2020-11-08T01:15:21Z) - Optical Excitations with Electron Beams: Challenges and Opportunities [0.0]
We provide an overview of photonics research based on free electrons, supplemented by original theoretical insights.
We show that the excitation probability by a single electron is independent of its wave function, apart from a classical average over the transverse beam density profile.
We conclude with perspectives on various exciting directions for disruptive approaches to non-invasive spectroscopy and microscopy.
arXiv Detail & Related papers (2020-10-26T12:08:32Z) - Free-Electron Shaping Using Quantum Light [0.0]
Here, we show that control over electron pulse shaping, compression, and statistics can be improved by replacing coherent laser excitation by interaction with quantum light.
We find that compression is accelerated for fixed optical intensity by using phase-squeezed light, while amplitude squeezing produces ultrashort double-pulse profiles.
The generated electron pulses exhibit periodic revivals in complete analogy to the optical Talbot effect.
arXiv Detail & Related papers (2020-08-03T15:35:43Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.