Multi-grained Semantics-aware Graph Neural Networks
- URL: http://arxiv.org/abs/2010.00238v3
- Date: Fri, 18 Mar 2022 17:21:25 GMT
- Title: Multi-grained Semantics-aware Graph Neural Networks
- Authors: Zhiqiang Zhong, Cheng-Te Li and Jun Pang
- Abstract summary: Graph Neural Networks (GNNs) are powerful techniques in representation learning for graphs.
This work proposes a unified model, AdamGNN, to interactively learn node and graph representations.
Experiments on 14 real-world graph datasets show that AdamGNN can significantly outperform 17 competing models on both node- and graph-wise tasks.
- Score: 13.720544777078642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are powerful techniques in representation
learning for graphs and have been increasingly deployed in a multitude of
different applications that involve node- and graph-wise tasks. Most existing
studies solve either the node-wise task or the graph-wise task independently
while they are inherently correlated. This work proposes a unified model,
AdamGNN, to interactively learn node and graph representations in a
mutual-optimisation manner. Compared with existing GNN models and graph pooling
methods, AdamGNN enhances the node representation with the learned
multi-grained semantics and avoids losing node features and graph structure
information during pooling. Specifically, a differentiable pooling operator is
proposed to adaptively generate a multi-grained structure that involves meso-
and macro-level semantic information in the graph. We also devise the unpooling
operator and the flyback aggregator in AdamGNN to better leverage the
multi-grained semantics to enhance node representations. The updated node
representations can further adjust the graph representation in the next
iteration. Experiments on 14 real-world graph datasets show that AdamGNN can
significantly outperform 17 competing models on both node- and graph-wise
tasks. The ablation studies confirm the effectiveness of AdamGNN's components,
and the last empirical analysis further reveals the ingenious ability of
AdamGNN in capturing long-range interactions.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Meta-Weight Graph Neural Network: Push the Limits Beyond Global
Homophily [24.408557217909316]
Graph Neural Networks (GNNs) show strong expressive power on graph data mining.
However, not all graphs are homophilic, even in the same graph, the distributions may vary significantly.
We propose Meta Weight Graph Neural Network (MWGNN) to adaptively construct graph convolution layers for different nodes.
arXiv Detail & Related papers (2022-03-19T09:27:38Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
Graph representation learning methods generate numerical vector representations for the nodes in a network.
In this work, we propose Inferential SIR-GN, a model which is pre-trained on random graphs, then computes node representations rapidly.
We demonstrate that the model is able to capture node's structural role information, and show excellent performance at node and graph classification tasks, on unseen networks.
arXiv Detail & Related papers (2021-11-08T20:56:37Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - GAIN: Graph Attention & Interaction Network for Inductive
Semi-Supervised Learning over Large-scale Graphs [18.23435958000212]
Graph Neural Networks (GNNs) have led to state-of-the-art performance on a variety of machine learning tasks such as recommendation, node classification and link prediction.
Most existing GNN models exploit a single type of aggregator to aggregate neighboring nodes information.
We propose a novel graph neural network architecture, Graph Attention & Interaction Network (GAIN), for inductive learning on graphs.
arXiv Detail & Related papers (2020-11-03T00:20:24Z) - CopulaGNN: Towards Integrating Representational and Correlational Roles
of Graphs in Graph Neural Networks [23.115288017590093]
We investigate how Graph Neural Network (GNN) models can effectively leverage both types of information.
The proposed Copula Graph Neural Network (CopulaGNN) can take a wide range of GNN models as base models.
arXiv Detail & Related papers (2020-10-05T15:20:04Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.