A biologically plausible neural network for multi-channel Canonical
Correlation Analysis
- URL: http://arxiv.org/abs/2010.00525v4
- Date: Fri, 26 Mar 2021 16:18:09 GMT
- Title: A biologically plausible neural network for multi-channel Canonical
Correlation Analysis
- Authors: David Lipshutz, Yanis Bahroun, Siavash Golkar, Anirvan M. Sengupta,
Dmitri B. Chklovskii
- Abstract summary: Cortical pyramidal neurons receive inputs from multiple neural populations and integrate these inputs in separate dendritic compartments.
We seek a multi-channel CCA algorithm that can be implemented in a biologically plausible neural network.
For biological plausibility, we require that the network operates in the online setting and its synaptic update rules are local.
- Score: 12.940770779756482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cortical pyramidal neurons receive inputs from multiple distinct neural
populations and integrate these inputs in separate dendritic compartments. We
explore the possibility that cortical microcircuits implement Canonical
Correlation Analysis (CCA), an unsupervised learning method that projects the
inputs onto a common subspace so as to maximize the correlations between the
projections. To this end, we seek a multi-channel CCA algorithm that can be
implemented in a biologically plausible neural network. For biological
plausibility, we require that the network operates in the online setting and
its synaptic update rules are local. Starting from a novel CCA objective
function, we derive an online optimization algorithm whose optimization steps
can be implemented in a single-layer neural network with multi-compartmental
neurons and local non-Hebbian learning rules. We also derive an extension of
our online CCA algorithm with adaptive output rank and output whitening.
Interestingly, the extension maps onto a neural network whose neural
architecture and synaptic updates resemble neural circuitry and synaptic
plasticity observed experimentally in cortical pyramidal neurons.
Related papers
- Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Biologically-Plausible Topology Improved Spiking Actor Network for Efficient Deep Reinforcement Learning [15.143466733327566]
Recent advances in neuroscience have unveiled that the human brain achieves efficient reward-based learning.
The success of Deep Reinforcement Learning (DRL) is largely attributed to utilizing Artificial Neural Networks (ANNs) as function approximators.
We propose a novel alternative for function approximator, the Biologically-Plausible Topology improved Spiking Actor Network (BPT-SAN)
arXiv Detail & Related papers (2024-03-29T13:25:19Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Efficient, probabilistic analysis of combinatorial neural codes [0.0]
neural networks encode inputs in the form of combinations of individual neurons' activities.
These neural codes present a computational challenge due to their high dimensionality and often large volumes of data.
We apply methods previously applied to small examples and apply them to large neural codes generated by experiments.
arXiv Detail & Related papers (2022-10-19T11:58:26Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - How and what to learn:The modes of machine learning [7.085027463060304]
We propose a new approach, namely the weight pathway analysis (WPA), to study the mechanism of multilayer neural networks.
WPA shows that a neural network stores and utilizes information in a "holographic" way, that is, the network encodes all training samples in a coherent structure.
It is found that hidden-layer neurons self-organize into different classes in the later stages of the learning process.
arXiv Detail & Related papers (2022-02-28T14:39:06Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
Deep Feedback Control (DFC) is a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment.
The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of connectivity patterns.
To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing.
arXiv Detail & Related papers (2021-06-15T05:30:17Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
We present a strategy to achieve structural plasticity by constantly rewiring the pre- and gpostsynaptic partners.
We implemented this algorithm on the analog neuromorphic system BrainScaleS-2.
We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology.
arXiv Detail & Related papers (2019-12-27T10:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.