論文の概要: Deep learning for time series classification
- arxiv url: http://arxiv.org/abs/2010.00567v1
- Date: Thu, 1 Oct 2020 17:38:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 06:58:53.267666
- Title: Deep learning for time series classification
- Title(参考訳): 時系列分類のための深層学習
- Authors: Hassan Ismail Fawaz
- Abstract要約: 時系列分析により、時間の経過とともにプロセスの進化を可視化し、理解することができます。
時系列分類は時系列データを自動的にラベル付けするアルゴリズムで構成されている。
ディープラーニングは、教師付き分類タスクに対処する最も効果的な方法の1つとして登場した。
- 参考スコア(独自算出の注目度): 2.0305676256390934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series analysis is a field of data science which is interested in
analyzing sequences of numerical values ordered in time. Time series are
particularly interesting because they allow us to visualize and understand the
evolution of a process over time. Their analysis can reveal trends,
relationships and similarities across the data. There exists numerous fields
containing data in the form of time series: health care (electrocardiogram,
blood sugar, etc.), activity recognition, remote sensing, finance (stock market
price), industry (sensors), etc. Time series classification consists of
constructing algorithms dedicated to automatically label time series data. The
sequential aspect of time series data requires the development of algorithms
that are able to harness this temporal property, thus making the existing
off-the-shelf machine learning models for traditional tabular data suboptimal
for solving the underlying task. In this context, deep learning has emerged in
recent years as one of the most effective methods for tackling the supervised
classification task, particularly in the field of computer vision. The main
objective of this thesis was to study and develop deep neural networks
specifically constructed for the classification of time series data. We thus
carried out the first large scale experimental study allowing us to compare the
existing deep methods and to position them compared other non-deep learning
based state-of-the-art methods. Subsequently, we made numerous contributions in
this area, notably in the context of transfer learning, data augmentation,
ensembling and adversarial attacks. Finally, we have also proposed a novel
architecture, based on the famous Inception network (Google), which ranks among
the most efficient to date.
- Abstract(参考訳): 時系列分析(英: Time series analysis)は、時系列で順序付けられた数値のシーケンスを分析することに興味を持つデータ科学の分野である。
時系列は、時間とともにプロセスの進化を可視化し理解できるので、特に興味深いです。
彼らの分析は、データ全体のトレンド、関係、および類似性を明らかにすることができる。
医療(心電図、血糖値など)、活動認識、リモートセンシング、金融(ストックマーケット価格)、産業(センサー)など、時系列形式でのデータを含む分野が多数存在する。
時系列分類は時系列データを自動的にラベル付けするアルゴリズムで構成されている。
時系列データのシーケンシャルな側面は、この時間的特性を活用するアルゴリズムの開発を必要とするため、既存の既成の機械学習モデルは、その基礎となるタスクを解決するために従来の表形式のデータサブ最適である。
この文脈において、ディープラーニングは、特にコンピュータビジョンの分野において、教師付き分類タスクに対処する最も効果的な方法の1つとして近年出現している。
この論文の主な目的は、時系列データの分類のために構築されたディープニューラルネットワークの研究と開発であった。
そこで本研究では,従来の深層学習法と比較し,非深層学習法と比較した大規模実験を行った。
その後、転送学習、データ拡張、センシング、敵の攻撃といった文脈で、この分野に多くの貢献をしました。
最後に、我々はまた、現在最も効率のよいインセプションネットワーク(google)に基づいた新しいアーキテクチャを提案しました。
関連論文リスト
- Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
このサーベイは、シーケンシャルなデータ処理の反復モデルに基づく最新のアプローチの詳細な概要を提供する。
新たなイメージは、標準のバックプロパゲーション・オブ・タイムから外れた学習アルゴリズムによって構成される、新しいルートを考える余地があることを示唆している。
論文 参考訳(メタデータ) (2024-06-13T12:51:22Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
時系列データ、特に時系列データと時間時間データは、現実世界のアプリケーションで広く使われている。
大規模言語やその他の基礎モデルの最近の進歩は、時系列データマイニングや時間データマイニングでの使用の増加に拍車を掛けている。
論文 参考訳(メタデータ) (2023-10-16T09:06:00Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Deep Learning for Time Series Classification and Extrinsic Regression: A
Current Survey [5.307337728506627]
時系列分類と外部回帰は、重要かつ困難な機械学習タスクである。
ディープラーニングは自然言語処理やコンピュータビジョンに革命をもたらし、時系列分析などの他の分野で大きな可能性を秘めている。
本稿では、時系列分類と外因性回帰のためのディープラーニングの高速移動領域における技術の現状を調査する。
論文 参考訳(メタデータ) (2023-02-06T01:01:00Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Data Augmentation techniques in time series domain: A survey and
taxonomy [0.20971479389679332]
時系列を扱うディープニューラルネットワークは、トレーニングで使用されるデータセットのサイズと一貫性に大きく依存する。
この研究は、すべての利用可能なアルゴリズムの概要を提供するために、この分野の最先端を体系的にレビューする。
本研究の究極的な目的は、この分野の将来の研究者を導くために、より良い結果をもたらす領域の進化と性能を概説することである。
論文 参考訳(メタデータ) (2022-06-25T17:09:00Z) - Multivariate Time Series Regression with Graph Neural Networks [0.6124773188525718]
近年のディープラーニングのグラフへの適用は,様々なグラフ関連タスクにおいて有望な可能性を示している。
しかし,これらの手法は時系列関連タスクにはあまり適用されていない。
本研究では,これらの長いシーケンスを多変量時系列回帰タスクで処理できるアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:11:46Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
本稿では,時系列をネットワークに変換する既存のマッピング手法について概観する。
我々は、主要な概念的アプローチを説明し、権威的な参照を提供し、統一された表記法と言語におけるそれらの利点と限界について洞察を与える。
ごく最近の研究だが、この研究領域には大きな可能性を秘めており、今後の研究の道を開くことを目的としている。
論文 参考訳(メタデータ) (2021-10-11T13:33:18Z) - Time Series Data Augmentation for Deep Learning: A Survey [35.2161833151567]
時系列データに対する様々なデータ拡張手法を体系的に検討する。
時系列分類や異常検出,予測など,さまざまなタスクに対するデータ拡張手法を実証的に比較した。
論文 参考訳(メタデータ) (2020-02-27T23:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。