論文の概要: Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans
- arxiv url: http://arxiv.org/abs/2010.00641v1
- Date: Thu, 1 Oct 2020 18:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 08:18:22.763756
- Title: Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans
- Title(参考訳): 高分解能スライドスキャンによる癌組織のマルチスケール検出
- Authors: Qingchao Zhang, Coy D. Heldermon, Corey Toler-Franklin
- Abstract要約: 高分解能スライドスキャンにおけるマルチスケール腫瘍(キメラ細胞)検出アルゴリズムを提案する。
提案手法では,CNNの異なる層における有効受容場を改良し,幅広いスケールの物体を1つの前方通過で検出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an algorithm for multi-scale tumor (chimeric cell) detection in
high resolution slide scans. The broad range of tumor sizes in our dataset pose
a challenge for current Convolutional Neural Networks (CNN) which often fail
when image features are very small (8 pixels). Our approach modifies the
effective receptive field at different layers in a CNN so that objects with a
broad range of varying scales can be detected in a single forward pass. We
define rules for computing adaptive prior anchor boxes which we show are
solvable under the equal proportion interval principle. Two mechanisms in our
CNN architecture alleviate the effects of non-discriminative features prevalent
in our data - a foveal detection algorithm that incorporates a cascade
residual-inception module and a deconvolution module with additional context
information. When integrated into a Single Shot MultiBox Detector (SSD), these
additions permit more accurate detection of small-scale objects. The results
permit efficient real-time analysis of medical images in pathology and related
biomedical research fields.
- Abstract(参考訳): 高分解能スライドスキャンにおけるマルチスケール腫瘍(キメラ細胞)検出アルゴリズムを提案する。
我々のデータセットの幅広い腫瘍サイズは、画像特徴が非常に小さい(8ピクセル)場合にしばしば失敗する現在の畳み込みニューラルネットワーク(cnn)にとって課題となる。
提案手法はcnnの異なる層における効果的な受容場を変化させ、様々なスケールの物体を単一のフォワードパスで検出できるようにする。
我々は,等比例区間原理の下で解くことができる適応型事前アンカーボックスの計算規則を定義する。
我々のcnnアーキテクチャにおける2つのメカニズムは、データに共通する非識別的特徴の影響を緩和する - カスケード残差インセプションモジュールと、追加のコンテキスト情報を持つデコンボリューションモジュールを組み込んだフォビア検出アルゴリズム。
Single Shot MultiBox Detector (SSD)に統合されると、これらの追加により、より正確な小さなオブジェクトの検出が可能になる。
その結果,病理学および関連バイオメディカル研究分野における医用画像の効率的なリアルタイム解析が可能となった。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - CAF-YOLO: A Robust Framework for Multi-Scale Lesion Detection in Biomedical Imagery [0.0682074616451595]
CAF-YOLOは、畳み込みニューラルネットワーク(CNN)とトランスフォーマーの強みを活用する、医学的対象検出のための、巧妙で堅牢な方法である。
ACFMモジュールはグローバル機能とローカル機能の両方のモデリングを強化し、長期的な機能依存のキャプチャを可能にする。
MSNNは多様なスケールにまたがる特徴を抽出することで、マルチスケールの情報集約を改善する。
論文 参考訳(メタデータ) (2024-08-04T01:44:44Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - DKMA-ULD: Domain Knowledge augmented Multi-head Attention based Robust
Universal Lesion Detection [19.165942326142538]
本稿では,1つのデータセットであるDeepLesionをトレーニングすることにより,全身の臓器にまたがる病変を検出できる,堅牢な普遍的病変検出(ULD)ネットワークを提案する。
我々は,新しい畳み込み型マルチヘッド自己保持モジュールを用いて,様々な強度のCTスライスを解析した。
約32KのCTスキャンと全臓器に注視病変を付加したDeepLesionデータセットを用いて,本ネットワークの有効性を検証した。
論文 参考訳(メタデータ) (2022-03-14T06:54:28Z) - Image Anomaly Detection by Aggregating Deep Pyramidal Representations [16.246831343527052]
異常検出は、データセット内で、ほとんどのデータと大きく異なるサンプルを特定することで構成される。
本稿では,複数のピラミッドレベルを持つ深層ニューラルネットワークを用いた画像異常検出に着目し,画像特徴を異なるスケールで解析する。
論文 参考訳(メタデータ) (2020-11-12T09:58:27Z) - Boosted EfficientNet: Detection of Lymph Node Metastases in Breast
Cancer Using Convolutional Neural Network [6.444922476853511]
The Convolutional Neutral Network (CNN) は乳癌のリンパ節転移の予測と分類に応用されている。
そこで本研究では,小さな解像度画像を容易にするためのRandom Center Cropping (RCC) という新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2020-10-10T15:18:56Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Volumetric landmark detection with a multi-scale shift equivariant
neural network [16.114319747246334]
本稿では,3次元画像における高速かつメモリ効率の高いランドマーク検出を実現するマルチスケールのエンドツーエンドディープラーニング手法を提案する。
今回我々は,263個のCT上における頸動脈分岐検出法について検討し,平均ユークリッド距離2.81mmで最先端の精度を実現した。
論文 参考訳(メタデータ) (2020-03-03T17:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。