LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion
- URL: http://arxiv.org/abs/2010.00731v3
- Date: Thu, 12 Nov 2020 22:29:07 GMT
- Title: LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion
- Authors: Meet Shah, Zhiling Huang, Ankit Laddha, Matthew Langford, Blake
Barber, Sidney Zhang, Carlos Vallespi-Gonzalez, Raquel Urtasun
- Abstract summary: We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
- Score: 52.59664614744447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present LiRaNet, a novel end-to-end trajectory prediction
method which utilizes radar sensor information along with widely used lidar and
high definition (HD) maps. Automotive radar provides rich, complementary
information, allowing for longer range vehicle detection as well as
instantaneous radial velocity measurements. However, there are factors that
make the fusion of lidar and radar information challenging, such as the
relatively low angular resolution of radar measurements, their sparsity and the
lack of exact time synchronization with lidar. To overcome these challenges, we
propose an efficient spatio-temporal radar feature extraction scheme which
achieves state-of-the-art performance on multiple large-scale datasets.Further,
by incorporating radar information, we show a 52% reduction in prediction error
for objects with high acceleration and a 16% reduction in prediction error for
objects at longer range.
Related papers
- RadarPillars: Efficient Object Detection from 4D Radar Point Clouds [42.9356088038035]
We present RadarPillars, a pillar-based object detection network.
By decomposing radial velocity data, RadarPillars significantly outperform state-of-the-art detection results on the View-of-Delft dataset.
This comes at a significantly reduced parameter count, surpassing existing methods in terms of efficiency and enabling real-time performance on edge devices.
arXiv Detail & Related papers (2024-08-09T12:13:38Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - TransRadar: Adaptive-Directional Transformer for Real-Time Multi-View
Radar Semantic Segmentation [21.72892413572166]
We propose a novel approach to the semantic segmentation of radar scenes using a multi-input fusion of radar data.
Our method, TransRadar, outperforms state-of-the-art methods on the CARRADA and RADIal datasets.
arXiv Detail & Related papers (2023-10-03T17:59:05Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
Radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception.
We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning.
Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy.
arXiv Detail & Related papers (2023-04-17T17:07:35Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
Self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches.
We present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework.
arXiv Detail & Related papers (2021-08-10T17:57:03Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z) - Probabilistic Oriented Object Detection in Automotive Radar [8.281391209717103]
We propose a deep-learning based algorithm for radar object detection.
We created a new multimodal dataset with 102544 frames of raw radar and synchronized LiDAR data.
Our best performing radar detection model achieves 77.28% AP under oriented IoU of 0.3.
arXiv Detail & Related papers (2020-04-11T05:29:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.