RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects
- URL: http://arxiv.org/abs/2007.14366v1
- Date: Tue, 28 Jul 2020 17:15:02 GMT
- Title: RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects
- Authors: Bin Yang, Runsheng Guo, Ming Liang, Sergio Casas, Raquel Urtasun
- Abstract summary: We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
- Score: 73.80316195652493
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We tackle the problem of exploiting Radar for perception in the context of
self-driving as Radar provides complementary information to other sensors such
as LiDAR or cameras in the form of Doppler velocity. The main challenges of
using Radar are the noise and measurement ambiguities which have been a
struggle for existing simple input or output fusion methods. To better address
this, we propose a new solution that exploits both LiDAR and Radar sensors for
perception. Our approach, dubbed RadarNet, features a voxel-based early fusion
and an attention-based late fusion, which learn from data to exploit both
geometric and dynamic information of Radar data. RadarNet achieves
state-of-the-art results on two large-scale real-world datasets in the tasks of
object detection and velocity estimation. We further show that exploiting Radar
improves the perception capabilities of detecting faraway objects and
understanding the motion of dynamic objects.
Related papers
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - Exploring Radar Data Representations in Autonomous Driving: A Comprehensive Review [9.68427762815025]
Review focuses on exploring different radar data representations utilized in autonomous driving systems.
We introduce the capabilities and limitations of the radar sensor.
For each radar representation, we examine the related datasets, methods, advantages and limitations.
arXiv Detail & Related papers (2023-12-08T06:31:19Z) - TransRadar: Adaptive-Directional Transformer for Real-Time Multi-View
Radar Semantic Segmentation [21.72892413572166]
We propose a novel approach to the semantic segmentation of radar scenes using a multi-input fusion of radar data.
Our method, TransRadar, outperforms state-of-the-art methods on the CARRADA and RADIal datasets.
arXiv Detail & Related papers (2023-10-03T17:59:05Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Radars for Autonomous Driving: A Review of Deep Learning Methods and
Challenges [0.021665899581403605]
Radar is a key component of the suite of perception sensors used for autonomous vehicles.
It is characterized by low resolution, sparsity, clutter, high uncertainty, and lack of good datasets.
Current radar models are often influenced by lidar and vision models, which are focused on optical features that are relatively weak in radar data.
arXiv Detail & Related papers (2023-06-15T17:37:52Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
Radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception.
We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning.
Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy.
arXiv Detail & Related papers (2023-04-17T17:07:35Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - Probabilistic Oriented Object Detection in Automotive Radar [8.281391209717103]
We propose a deep-learning based algorithm for radar object detection.
We created a new multimodal dataset with 102544 frames of raw radar and synchronized LiDAR data.
Our best performing radar detection model achieves 77.28% AP under oriented IoU of 0.3.
arXiv Detail & Related papers (2020-04-11T05:29:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.