論文の概要: Incorporating Machine Learning to Evaluate Solutions to the University
Course Timetabling Problem
- arxiv url: http://arxiv.org/abs/2010.00826v1
- Date: Fri, 2 Oct 2020 07:44:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 01:06:06.461145
- Title: Incorporating Machine Learning to Evaluate Solutions to the University
Course Timetabling Problem
- Title(参考訳): 大学進路タイムタリング問題に対する解法評価のための機械学習の導入
- Authors: Patrick Kenekayoro
- Abstract要約: そこで本研究では,教師あり学習アルゴリズムを用いて,大学授業の時間変化問題に対する評価関数の近似を求める方法について検討した。
従来の評価関数は教師付き学習回帰モデルと最大97%の時間で一致した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating solutions to optimization problems is arguably the most important
step for heuristic algorithms, as it is used to guide the algorithms towards
the optimal solution in the solution search space. Research has shown
evaluation functions to some optimization problems to be impractical to compute
and have thus found surrogate less expensive evaluation functions to those
problems. This study investigates the extent to which supervised learning
algorithms can be used to find approximations to evaluation functions for the
university course timetabling problem. Up to 97 percent of the time, the
traditional evaluation function agreed with the supervised learning regression
model on the result of comparison of the quality of pair of solutions to the
university course timetabling problem, suggesting that supervised learning
regression models can be suitable alternatives for optimization problems'
evaluation functions.
- Abstract(参考訳): 最適化問題に対する解の評価は、解探索空間の最適解に向かってアルゴリズムを導くために用いられるため、ヒューリスティックアルゴリズムにとっておそらく最も重要なステップである。
研究は、計算に実用的でないいくつかの最適化問題に対する評価関数を示し、その結果、これらの問題に対するより安価な評価関数を導出することを発見した。
本研究では,教師付き学習アルゴリズムを用いて,大学進路タイムタリング問題の評価関数に対する近似を求める方法について検討する。
従来の評価関数は,97%までの時間において,大学進路タイムタリング問題に対する解対の品質比較の結果,教師あり学習回帰モデルと一致しており,教師あり学習回帰モデルが最適化問題の評価関数の代替として適していることが示唆された。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - A Guide to Stochastic Optimisation for Large-Scale Inverse Problems [4.926711494319977]
最適化アルゴリズムは、大量のデータを持つ機械学習のデファクトスタンダードです。
我々は、逆問題の観点から、最適化における最先端の総合的な説明を提供する。
私たちは、機械学習で一般的に遭遇しない、ユニークな最適化の課題に焦点を合わせています。
論文 参考訳(メタデータ) (2024-06-10T15:02:30Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
我々は、意思決定プロセスを明らかにするために、事前の意思決定データを使用する逆問題を考える。
この統計的学習問題は、データ駆動逆最適化と呼ばれる。
そこで本稿では,大規模問題を解くために,効率的なブロック座標降下に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-27T12:52:56Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - How to effectively use machine learning models to predict the solutions
for optimization problems: lessons from loss function [0.0]
本稿では,高度な機械学習手法を用いた制約最適化問題に対する良質な解の予測を目的とする。
citeabbasi 2020predictingの仕事を拡張し、大規模最適化モデルのソリューションを予測するために機械学習モデルを使用する。
論文 参考訳(メタデータ) (2021-05-14T02:14:00Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
提案アルゴリズムは,実モデルのモデルによって定義される一連の代理問題の解法に基づく。
また,最適化ランドスケープのための最適なサロゲートモデルとナビゲーション戦略のメタ検索を行う。
論文 参考訳(メタデータ) (2021-03-19T11:18:03Z) - Logistic Q-Learning [87.00813469969167]
MDPにおける最適制御の正規化線形プログラミング定式化から導いた新しい強化学習アルゴリズムを提案する。
提案アルゴリズムの主な特徴は,広範に使用されているベルマン誤差の代わりとして理論的に音声として機能する,政策評価のための凸損失関数である。
論文 参考訳(メタデータ) (2020-10-21T17:14:31Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。