Remote Sensing Image Scene Classification with Self-Supervised Paradigm
under Limited Labeled Samples
- URL: http://arxiv.org/abs/2010.00882v1
- Date: Fri, 2 Oct 2020 09:27:19 GMT
- Title: Remote Sensing Image Scene Classification with Self-Supervised Paradigm
under Limited Labeled Samples
- Authors: Chao Tao, Ji Qi, Weipeng Lu, Hao Wang and Haifeng Li
- Abstract summary: We introduce new self-supervised learning (SSL) mechanism to obtain the high-performance pre-training model for RSIs scene classification from large unlabeled data.
Experiments on three commonly used RSIs scene classification datasets demonstrated that this new learning paradigm outperforms the traditional dominant ImageNet pre-trained model.
The insights distilled from our studies can help to foster the development of SSL in the remote sensing community.
- Score: 11.025191332244919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of deep learning, supervised learning methods perform
well in remote sensing images (RSIs) scene classification. However, supervised
learning requires a huge number of annotated data for training. When labeled
samples are not sufficient, the most common solution is to fine-tune the
pre-training models using a large natural image dataset (e.g. ImageNet).
However, this learning paradigm is not a panacea, especially when the target
remote sensing images (e.g. multispectral and hyperspectral data) have
different imaging mechanisms from RGB natural images. To solve this problem, we
introduce new self-supervised learning (SSL) mechanism to obtain the
high-performance pre-training model for RSIs scene classification from large
unlabeled data. Experiments on three commonly used RSIs scene classification
datasets demonstrated that this new learning paradigm outperforms the
traditional dominant ImageNet pre-trained model. Moreover, we analyze the
impacts of several factors in SSL on RSIs scene classification tasks, including
the choice of self-supervised signals, the domain difference between the source
and target dataset, and the amount of pre-training data. The insights distilled
from our studies can help to foster the development of SSL in the remote
sensing community. Since SSL could learn from unlabeled massive RSIs which are
extremely easy to obtain, it will be a potentially promising way to alleviate
dependence on labeled samples and thus efficiently solve many problems, such as
global mapping.
Related papers
- A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - Unsupervised Few-Shot Continual Learning for Remote Sensing Image Scene Classification [14.758282519523744]
Unsupervised flat-wide learning approach (UNISA) for unsupervised few-shot continual learning approaches of remote sensing image scene classifications.
Our numerical study with remote sensing image scene datasets and a hyperspectral dataset confirms the advantages of our solution.
arXiv Detail & Related papers (2024-06-04T03:06:41Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene
Classification [5.323049242720532]
Self-supervised learning has emerged as a promising approach for remote sensing image classification.
We present a study of different self-supervised pre-training strategies and evaluate their effect across 14 downstream datasets.
arXiv Detail & Related papers (2023-07-04T10:57:52Z) - A generic self-supervised learning (SSL) framework for representation
learning from spectra-spatial feature of unlabeled remote sensing imagery [4.397725469518669]
Self-supervised learning (SSL) enables the models to learn a representation from orders of magnitude more unlabelled data.
This work has designed a novel SSL framework that is capable of learning representation from both spectra-spatial information of unlabelled data.
arXiv Detail & Related papers (2023-06-27T23:50:43Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
We present Contrastive Spatial Pre-Training (CSP), a self-supervised learning framework for geo-tagged images.
We use a dual-encoder to separately encode the images and their corresponding geo-locations, and use contrastive objectives to learn effective location representations from images.
CSP significantly boosts the model performance with 10-34% relative improvement with various labeled training data sampling ratios.
arXiv Detail & Related papers (2023-05-01T23:11:18Z) - Self Supervised Learning for Few Shot Hyperspectral Image Classification [57.2348804884321]
We propose to leverage Self Supervised Learning (SSL) for HSI classification.
We show that by pre-training an encoder on unlabeled pixels using Barlow-Twins, a state-of-the-art SSL algorithm, we can obtain accurate models with a handful of labels.
arXiv Detail & Related papers (2022-06-24T07:21:53Z) - Terrain Classification using Transfer Learning on Hyperspectral Images:
A Comparative study [0.13999481573773068]
convolutional neural network (CNN) and the Multi-Layer Perceptron (MLP) have been proven to be an effective method of image classification.
However, they suffer from the issues of long training time and requirement of large amounts of the labeled data.
We propose using the method of transfer learning to decrease the training time and reduce the dependence on large labeled dataset.
arXiv Detail & Related papers (2022-06-19T14:36:33Z) - Semantic-aware Dense Representation Learning for Remote Sensing Image
Change Detection [20.761672725633936]
Training deep learning-based change detection model heavily depends on labeled data.
Recent trend is using remote sensing (RS) data to obtain in-domain representations via supervised or self-supervised learning (SSL)
We propose dense semantic-aware pre-training for RS image CD via sampling multiple class-balanced points.
arXiv Detail & Related papers (2022-05-27T06:08:33Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
This paper presents a Self-supervised Low-Rank Network ( SLRNet) for single-stage weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS)
SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several attentive LR representations from different views of an image to learn precise pseudo-labels.
Experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings.
arXiv Detail & Related papers (2022-03-19T09:19:55Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.