Semantic-aware Dense Representation Learning for Remote Sensing Image
Change Detection
- URL: http://arxiv.org/abs/2205.13769v1
- Date: Fri, 27 May 2022 06:08:33 GMT
- Title: Semantic-aware Dense Representation Learning for Remote Sensing Image
Change Detection
- Authors: Hao Chen, Wenyuan Li, Song Chen and Zhenwei Shi
- Abstract summary: Training deep learning-based change detection model heavily depends on labeled data.
Recent trend is using remote sensing (RS) data to obtain in-domain representations via supervised or self-supervised learning (SSL)
We propose dense semantic-aware pre-training for RS image CD via sampling multiple class-balanced points.
- Score: 20.761672725633936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training deep learning-based change detection (CD) model heavily depends on
labeled data. Contemporary transfer learning-based methods to alleviate the CD
label insufficiency mainly upon ImageNet pre-training. A recent trend is using
remote sensing (RS) data to obtain in-domain representations via supervised or
self-supervised learning (SSL). Here, different from traditional supervised
pre-training that learns the mapping from image to label, we leverage semantic
supervision in a contrastive manner. There are typically multiple objects of
interest (e.g., buildings) distributed in varying locations in RS images. We
propose dense semantic-aware pre-training for RS image CD via sampling multiple
class-balanced points. Instead of manipulating image-level representations that
lack spatial information, we constrain pixel-level cross-view consistency and
cross-semantic discrimination to learn spatially-sensitive features, thus
benefiting downstream dense CD. Apart from learning illumination invariant
features, we fulfill consistent foreground features insensitive to irrelevant
background changes via a synthetic view using background swapping. We
additionally achieve discriminative representations to distinguish foreground
land-covers and others. We collect large-scale image-mask pairs freely
available in the RS community for pre-training. Extensive experiments on three
CD datasets verify the effectiveness of our method. Ours significantly
outperforms ImageNet, in-domain supervision, and several SSL methods. Empirical
results indicate ours well alleviates data insufficiency in CD. Notably, we
achieve competitive results using only 20% training data than baseline (random)
using 100% data. Both quantitative and qualitative results demonstrate the
generalization ability of our pre-trained model to downstream images even
remaining domain gaps with the pre-training data. Our Code will make public.
Related papers
- CricaVPR: Cross-image Correlation-aware Representation Learning for Visual Place Recognition [73.51329037954866]
We propose a robust global representation method with cross-image correlation awareness for visual place recognition.
Our method uses the attention mechanism to correlate multiple images within a batch.
Our method outperforms state-of-the-art methods by a large margin with significantly less training time.
arXiv Detail & Related papers (2024-02-29T15:05:11Z) - Deep Semantic-Visual Alignment for Zero-Shot Remote Sensing Image Scene
Classification [26.340737217001497]
Zero-shot learning (ZSL) allows for identifying novel classes that are not seen during training.
Previous ZSL models mainly depend on manually-labeled attributes or word embeddings extracted from language models to transfer knowledge from seen classes to novel classes.
We propose to collect visually detectable attributes automatically. We predict attributes for each class by depicting the semantic-visual similarity between attributes and images.
arXiv Detail & Related papers (2024-02-03T09:18:49Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
We present Contrastive Spatial Pre-Training (CSP), a self-supervised learning framework for geo-tagged images.
We use a dual-encoder to separately encode the images and their corresponding geo-locations, and use contrastive objectives to learn effective location representations from images.
CSP significantly boosts the model performance with 10-34% relative improvement with various labeled training data sampling ratios.
arXiv Detail & Related papers (2023-05-01T23:11:18Z) - Self-Supervised In-Domain Representation Learning for Remote Sensing
Image Scene Classification [1.0152838128195465]
Transferring the ImageNet pre-trained weights to the various remote sensing tasks has produced acceptable results.
Recent research has demonstrated that self-supervised learning methods capture visual features that are more discriminative and transferable.
We are motivated by these facts to pre-train the in-domain representations of remote sensing imagery using contrastive self-supervised learning.
arXiv Detail & Related papers (2023-02-03T15:03:07Z) - Semantic decoupled representation learning for remote sensing image
change detection [17.548248093344576]
We propose a semantic decoupled representation learning for RS image CD.
We disentangle representations of different semantic regions by leveraging the semantic mask.
We additionally force the model to distinguish different semantic representations, which benefits the recognition of objects of interest in the downstream CD task.
arXiv Detail & Related papers (2022-01-15T07:35:26Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
We propose AugNet, a new deep learning training paradigm to learn image features from a collection of unlabeled pictures.
Our experiments demonstrate that the method is able to represent the image in low dimensional space.
Unlike many deep-learning-based image retrieval algorithms, our approach does not require access to external annotated datasets.
arXiv Detail & Related papers (2021-06-11T09:02:30Z) - Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote
Sensing Data [64.40187171234838]
Seasonal Contrast (SeCo) is an effective pipeline to leverage unlabeled data for in-domain pre-training of re-mote sensing representations.
SeCo will be made public to facilitate transfer learning and enable rapid progress in re-mote sensing applications.
arXiv Detail & Related papers (2021-03-30T18:26:39Z) - Remote Sensing Image Scene Classification with Self-Supervised Paradigm
under Limited Labeled Samples [11.025191332244919]
We introduce new self-supervised learning (SSL) mechanism to obtain the high-performance pre-training model for RSIs scene classification from large unlabeled data.
Experiments on three commonly used RSIs scene classification datasets demonstrated that this new learning paradigm outperforms the traditional dominant ImageNet pre-trained model.
The insights distilled from our studies can help to foster the development of SSL in the remote sensing community.
arXiv Detail & Related papers (2020-10-02T09:27:19Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-saliency detection (Co-SOD) aims to segment the common salient foreground in a group of relevant images.
In this paper, inspired by human behavior, we propose a gradient-induced co-saliency detection method.
arXiv Detail & Related papers (2020-04-28T08:40:55Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.