Multi-Resolution 3D Convolutional Neural Networks for Automatic Coronary
Centerline Extraction in Cardiac CT Angiography Scans
- URL: http://arxiv.org/abs/2010.00925v2
- Date: Mon, 7 Dec 2020 06:09:17 GMT
- Title: Multi-Resolution 3D Convolutional Neural Networks for Automatic Coronary
Centerline Extraction in Cardiac CT Angiography Scans
- Authors: Zohaib Salahuddin, Matthias Lenga and Hannes Nickisch
- Abstract summary: We propose a deep learning-based automatic coronary artery tree centerline tracker (AuCoTrack) extending the vessel tracker by Wolterink.
A dual pathway Convolutional Neural Network (CNN) operating on multi-scale 3D inputs predicts the direction of the coronary arteries.
A similar multi-scale dual pathway 3D CNN is trained to identify coronary artery endpoints for terminating the tracking process.
- Score: 3.3774970857450084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a deep learning-based automatic coronary artery tree centerline
tracker (AuCoTrack) extending the vessel tracker by Wolterink
(arXiv:1810.03143). A dual pathway Convolutional Neural Network (CNN) operating
on multi-scale 3D inputs predicts the direction of the coronary arteries as
well as the presence of a bifurcation. A similar multi-scale dual pathway 3D
CNN is trained to identify coronary artery endpoints for terminating the
tracking process. Two or more continuation directions are derived based on the
bifurcation detection. The iterative tracker detects the entire left and right
coronary artery trees based on only two ostium landmarks derived from a
model-based segmentation of the heart.
The 3D CNNs were trained on a proprietary dataset consisting of 43 CCTA
scans. An average sensitivity of 87.1% and clinically relevant overlap of 89.1%
was obtained relative to a refined manual segmentation. In addition, the MICCAI
2008 Coronary Artery Tracking Challenge (CAT08) training and test datasets were
used to benchmark the algorithm and to assess its generalization. An average
overlap of 93.6% and a clinically relevant overlap of 96.4% were obtained. The
proposed method achieved better overlap scores than the current
state-of-the-art automatic centerline extraction techniques on the CAT08
dataset with a vessel detection rate of 95%.
Related papers
- Segmentation of Aortic Vessel Tree in CT Scans with Deep Fully
Convolutional Networks [4.062948258086793]
Automatic and accurate segmentation of aortic vessel tree (AVT) in computed tomography (CT) scans is crucial for early detection, diagnosis and prognosis of aortic diseases.
We use two-stage fully convolutional networks (FCNs) to automatically segment AVT in scans from multiple centers.
arXiv Detail & Related papers (2023-05-16T22:24:01Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
To investigate chest radiograph (CXR) classification performance of vision transformers (ViT) and interpretability of attention-based saliency.
ViTs were fine-tuned for lung disease classification using four public data sets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData.
ViTs had comparable CXR classification AUCs compared with state-of-the-art CNNs.
arXiv Detail & Related papers (2023-03-03T12:05:41Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Nested-block self-attention for robust radiotherapy planning
segmentation [3.2541650155921142]
Deep convolutional networks have been widely studied for head and neck (HN) organs at risk (OAR) segmentation.
Their use for routine clinical treatment planning is limited by a lack of robustness to imaging artifacts, low soft tissue contrast on CT, and the presence of abnormal anatomy.
We developed a computationally efficient nested block self-attention (NBSA) method that can be combined with any convolutional network.
arXiv Detail & Related papers (2021-02-26T15:28:47Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
We aim to develop an automatic algorithm by deep learning to extract coronary arteries from ICAs.
In this study, a multi-input and multi-scale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation.
Experimental results demonstrated that the proposed method achieved an average Dice score of 0.8329, an average sensitivity of 0.8281, and an average specificity of 0.9979 in our dataset with 294 ICAs obtained from 73 patient.
arXiv Detail & Related papers (2021-01-25T01:48:27Z) - Cascaded Convolutional Neural Network for Automatic Myocardial
Infarction Segmentation from Delayed-Enhancement Cardiac MRI [12.940103904327655]
We propose a cascaded convolutional neural network for automatic myocardial infarction segmentation from cardiac MRI.
Our method is evaluated on the MICCAI 2020 EMIDEC challenge dataset and achieves average Dice score of 0.8786, 0.7124 and 0.7851 for myocardium, infarction and no-reflow respectively.
arXiv Detail & Related papers (2020-12-28T07:41:10Z) - Multiple resolution residual network for automatic thoracic
organs-at-risk segmentation from CT [2.9023633922848586]
We implement and evaluate a multiple resolution residual network (MRRN) for multiple normal organs-at-risk (OAR) segmentation from computed tomography (CT) images.
Our approach simultaneously combines feature streams computed at multiple image resolutions and feature levels through residual connections.
We trained our approach using 206 thoracic CT scans of lung cancer patients with 35 scans held out for validation to segment the left and right lungs, heart, esophagus, and spinal cord.
arXiv Detail & Related papers (2020-05-27T22:39:09Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.