Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network
- URL: http://arxiv.org/abs/2010.01197v1
- Date: Tue, 29 Sep 2020 22:54:30 GMT
- Title: Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network
- Authors: Xing Wang, Yijun Wang, Bin Weng, Aleksandr Vinel
- Abstract summary: We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
- Score: 71.25144476293507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We have proposed to develop a global hybrid deep learning framework to
predict the daily prices in the stock market. With representation learning, we
derived an embedding called Stock2Vec, which gives us insight for the
relationship among different stocks, while the temporal convolutional layers
are used for automatically capturing effective temporal patterns both within
and across series. Evaluated on S&P 500, our hybrid framework integrates both
advantages and achieves better performance on the stock price prediction task
than several popular benchmarked models.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Multi-relational Graph Diffusion Neural Network with Parallel Retention
for Stock Trends Classification [6.383640665055313]
We propose a graph-based representation learning approach aimed at predicting future movements of multiple stocks.
Our approach consistently outperforms state-of-the-art baselines in forecasting next trading day stock trends across three test periods spanning seven years.
arXiv Detail & Related papers (2024-01-05T17:15:45Z) - Combining Deep Learning and GARCH Models for Financial Volatility and
Risk Forecasting [0.0]
We develop a hybrid approach to forecasting the volatility and risk of financial instruments by combining common econometric GARCH time series models with deep learning neural networks.
For the latter, we employ Gated Recurrent Unit (GRU) networks, whereas four different specifications are used as the GARCH component: standard GARCH, EGARCH, GJR-GARCH and APARCH.
Models are tested using daily logarithmic returns on the S&P 500 index as well as gold price Bitcoin prices.
arXiv Detail & Related papers (2023-10-02T10:18:13Z) - Stock Trend Prediction: A Semantic Segmentation Approach [3.718476964451589]
We present a novel approach to predict long-term daily stock price change trends with fully 2D-convolutional encoder-decoders.
Our hierarchical structure of CNNs makes it capable of capturing both long and short-term temporal relationships effectively.
arXiv Detail & Related papers (2023-03-09T01:29:09Z) - Spatio-Temporal Momentum: Jointly Learning Time-Series and
Cross-Sectional Strategies [3.351714665243138]
We introduce Spatio-Temporal Momentum strategies, which unify both time-series and cross-sectional momentum strategies by trading assets based on their cross-sectional momentum features over time.
We demonstrate that the model is able to retain its performance over benchmarks in the presence of high transaction costs.
In particular, we find that the model when coupled with least absolute shrinkage and turnover regularization results in the best performance over various transaction cost scenarios.
arXiv Detail & Related papers (2023-02-20T18:59:05Z) - Forex Trading Volatility Prediction using Neural Network Models [6.09960572440709]
We show how to construct the deep-learning network by the guidance of the empirical patterns of the intra-day volatility.
The numerical results show that the multiscale Long Short-Term Memory (LSTM) model with the input of multi-currency pairs consistently achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-12-02T12:33:12Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.