Forex Trading Volatility Prediction using Neural Network Models
- URL: http://arxiv.org/abs/2112.01166v2
- Date: Fri, 3 Dec 2021 15:19:49 GMT
- Title: Forex Trading Volatility Prediction using Neural Network Models
- Authors: Shujian Liao, Jian Chen and Hao Ni
- Abstract summary: We show how to construct the deep-learning network by the guidance of the empirical patterns of the intra-day volatility.
The numerical results show that the multiscale Long Short-Term Memory (LSTM) model with the input of multi-currency pairs consistently achieves the state-of-the-art accuracy.
- Score: 6.09960572440709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the problem of predicting the future volatility
of Forex currency pairs using the deep learning techniques. We show
step-by-step how to construct the deep-learning network by the guidance of the
empirical patterns of the intra-day volatility. The numerical results show that
the multiscale Long Short-Term Memory (LSTM) model with the input of
multi-currency pairs consistently achieves the state-of-the-art accuracy
compared with both the conventional baselines, i.e. autoregressive and GARCH
model, and the other deep learning models.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
We present a new, hybrid Deep Learning model that captures and forecasting market volatility more accurately than either class of models are capable of on their own.
When compared to other time series models, GINN showed superior out-of-sample prediction performance in terms of the Coefficient of Determination ($R2$), Mean Squared Error (MSE), and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-09-30T23:53:54Z) - Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals [0.0]
A comparative analysis of deep learning models and traditional statistical methods for stock price prediction uses data from the Nigerian stock exchange.
Deep learning models, particularly LSTM, outperform traditional methods by capturing complex, nonlinear patterns in the data.
The findings highlight the potential of deep learning for improving financial forecasting and investment strategies.
arXiv Detail & Related papers (2024-09-29T11:20:20Z) - COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning [5.459325230078567]
This paper investigates the forecasting performance of COMEX copper futures realized volatility using both econometric volatility models and deep learning recurrent neural network models.
In forecasting daily realized volatility for COMEX copper futures with a rolling window approach, the econometric models, particularly HAR, outperform recurrent neural networks overall.
Despite the black-box nature of machine learning models, the deep learning models demonstrate superior forecasting performance, surpassing the fixed QLIKE value of HAR in the experiment.
arXiv Detail & Related papers (2024-09-12T18:44:31Z) - Volatility forecasting using Deep Learning and sentiment analysis [0.0]
This paper presents a composite model that merges a deep learning approach with sentiment analysis for predicting market volatility.
We then describe a composite forecasting model, a Long-Short-Term-Memory Neural Network method, to use historical sentiment and the previous day's volatility to make forecasts.
arXiv Detail & Related papers (2022-10-22T14:54:33Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Adaptive learning for financial markets mixing model-based and
model-free RL for volatility targeting [0.0]
Model-Free Reinforcement Learning has achieved meaningful results in stable environments but, to this day, it remains problematic in regime changing environments like financial markets.
We propose to combine the best of the two techniques by selecting various model-based approaches thanks to Model-Free Deep Reinforcement Learning.
arXiv Detail & Related papers (2021-04-19T19:20:22Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
arXiv Detail & Related papers (2020-09-29T22:54:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.