FPGA Implementation of Simplified Spiking Neural Network
- URL: http://arxiv.org/abs/2010.01200v1
- Date: Fri, 2 Oct 2020 21:02:35 GMT
- Title: FPGA Implementation of Simplified Spiking Neural Network
- Authors: Shikhar Gupta, Arpan Vyas, Gaurav Trivedi
- Abstract summary: Spiking Neural Networks (SNN) are third-generation Artificial Neural Networks (ANN) which are close to the biological neural system.
SNNs are more powerful than their predecessors because they encode temporal information and use biologically plausible plasticity rules.
The proposed model is validated on a Xilinx Virtex 6 FPGA and analyzes a fully connected network which consists of 800 neurons and 12,544 synapses in real-time.
- Score: 0.6445605125467573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNN) are third-generation Artificial Neural Networks
(ANN) which are close to the biological neural system. In recent years SNN has
become popular in the area of robotics and embedded applications, therefore, it
has become imperative to explore its real-time and energy-efficient
implementations. SNNs are more powerful than their predecessors because they
encode temporal information and use biologically plausible plasticity rules. In
this paper, a simpler and computationally efficient SNN model using FPGA
architecture is described. The proposed model is validated on a Xilinx Virtex 6
FPGA and analyzes a fully connected network which consists of 800 neurons and
12,544 synapses in real-time.
Related papers
- A Robust, Open-Source Framework for Spiking Neural Networks on Low-End FPGAs [0.0]
spiking neural networks (SNNs) have emerged as a potential solution to increasingly power-hungry neural networks.<n>This paper presents a framework consisting of a robust SNN acceleration architecture and a Pytorch-based SNN model compiler.<n>The architecture targets low-end FPGAs and requires very little (6358 LUT, 40.5 BRAM) resources.
arXiv Detail & Related papers (2025-07-09T21:08:28Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
Spiking neural networks (SNNs) are investigated as biologically inspired models of neural computation.
This paper reveals that SNNs, when amalgamated with synaptic delay and temporal coding, are proficient in executing (knowledge) graph reasoning.
arXiv Detail & Related papers (2024-05-27T05:53:30Z) - A survey on learning models of spiking neural membrane systems and spiking neural networks [0.0]
Spiking neural networks (SNN) are a biologically inspired model of neural networks with certain brain-like properties.
In SNN, communication between neurons takes place through the spikes and spike trains.
SNPS can be considered a branch of SNN based more on the principles of formal automata.
arXiv Detail & Related papers (2024-03-27T14:26:41Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
Spiking neural networks (SNNs) recently gained momentum due to their low-power multiplication-free computing.
SNNs require very long spike trains (up to 1000) to reach an accuracy similar to their artificial neural network (ANN) counterparts for large models.
We present a novel hardware architecture that can efficiently support SNN with emerging neural encoding.
arXiv Detail & Related papers (2022-06-06T10:56:25Z) - Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks [7.840247953745616]
Spiking neural networks (SNNs) are brain-inspired machine learning algorithms with merits such as biological plausibility and unsupervised learning capability.
This paper establishes a precise mathematical mapping between the biological parameters of the Linear Leaky-Integrate-and-Fire model (LIF)/SNNs and the parameters of ReLU-AN/Deep Neural Networks (DNNs)
arXiv Detail & Related papers (2022-05-31T17:02:26Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - E3NE: An End-to-End Framework for Accelerating Spiking Neural Networks
with Emerging Neural Encoding on FPGAs [6.047137174639418]
End-to-end framework E3NE automates the generation of efficient SNN inference logic for FPGAs.
E3NE uses less than 50% of hardware resources and 20% less power, while reducing the latency by an order of magnitude.
arXiv Detail & Related papers (2021-11-19T04:01:19Z) - Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks [1.8515971640245998]
Spiking neural networks (SNNs) have been investigated as more biologically plausible and potentially more powerful models of neural computation.
We show how a novel surrogate gradient combined with recurrent networks of tunable and adaptive spiking neurons yields state-of-the-art for SNNs.
arXiv Detail & Related papers (2021-03-12T10:27:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.