論文の概要: CorrAttack: Black-box Adversarial Attack with Structured Search
- arxiv url: http://arxiv.org/abs/2010.01250v1
- Date: Sat, 3 Oct 2020 01:44:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 08:45:31.686791
- Title: CorrAttack: Black-box Adversarial Attack with Structured Search
- Title(参考訳): corrattack:構造化検索によるブラックボックス攻撃
- Authors: Zhichao Huang, Yaowei Huang, Tong Zhang
- Abstract要約: そこで本研究では,攻撃者が対象モデルの損失を問合せする,スコアベース対逆攻撃の新しい手法を提案する。
本手法では,損失関数の勾配関係を捉える構造を持つパラメータ化探索空間を用いる。
- 参考スコア(独自算出の注目度): 20.30669137726607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new method for score-based adversarial attack, where the
attacker queries the loss-oracle of the target model. Our method employs a
parameterized search space with a structure that captures the relationship of
the gradient of the loss function. We show that searching over the structured
space can be approximated by a time-varying contextual bandits problem, where
the attacker takes feature of the associated arm to make modifications of the
input, and receives an immediate reward as the reduction of the loss function.
The time-varying contextual bandits problem can then be solved by a Bayesian
optimization procedure, which can take advantage of the features of the
structured action space. The experiments on ImageNet and the Google Cloud
Vision API demonstrate that the proposed method achieves the state of the art
success rates and query efficiencies for both undefended and defended models.
- Abstract(参考訳): そこで本研究では,攻撃者が対象モデルの損失を問合せするスコアベース逆攻撃法を提案する。
本手法では,損失関数の勾配の関係をキャプチャする構造を持つパラメータ化された探索空間を用いる。
構造化空間上での探索は,攻撃者が関連するアームの特徴を付けて入力の修正を行い,損失関数の削減として即時報酬を受け取る時間的変動コンテキストバンディット問題によって近似できることを示す。
時変の文脈的バンディット問題はベイズ最適化手順によって解決され、構造化されたアクション空間の特徴を活用できる。
ImageNetとGoogle Cloud Vision APIの実験は、提案手法が、未定義モデルと防御モデルの両方で、技術成功率とクエリ効率の状態を達成していることを示している。
関連論文リスト
- BruSLeAttack: A Query-Efficient Score-Based Black-Box Sparse Adversarial Attack [22.408968332454062]
モデルクエリに対するスコアベースの応答を単純に観察することで、スパース対逆サンプルを生成するという、独特であまりよく理解されていない問題について検討する。
この問題に対するBruSLeAttackアルゴリズムを開発した。
私たちの作業は、モデル脆弱性の迅速な評価を促進し、デプロイされたシステムの安全性、セキュリティ、信頼性に対する警戒を高めます。
論文 参考訳(メタデータ) (2024-04-08T08:59:26Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Simultaneously Optimizing Perturbations and Positions for Black-box
Adversarial Patch Attacks [13.19708582519833]
敵パッチは、ディープニューラルネットワークの堅牢性に重大なリスクをもたらす、現実世界の敵攻撃の重要な形態である。
従来の方法は、貼付位置を固定しながら摂動値を最適化するか、パッチの内容を修正しながら位置を操作することにより、敵パッチを生成する。
敵パッチの位置と摂動を同時に最適化し,ブラックボックス設定において高い攻撃成功率が得られる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-12-26T02:48:37Z) - RamBoAttack: A Robust Query Efficient Deep Neural Network Decision
Exploit [9.93052896330371]
本研究では,局所的な最小値の侵入を回避し,ノイズ勾配からのミスダイレクトを回避できる,堅牢なクエリ効率の高い攻撃法を開発した。
RamBoAttackは、敵クラスとターゲットクラスで利用可能な異なるサンプルインプットに対して、より堅牢である。
論文 参考訳(メタデータ) (2021-12-10T01:25:24Z) - Geometrically Adaptive Dictionary Attack on Face Recognition [23.712389625037442]
顔認証に対するクエリ効率の良いブラックボックス攻撃のための戦略を提案する。
中心となるアイデアは、UVテクスチャマップに逆方向の摂動を作り、それを画像の顔に投影することです。
LFWデータセットとCPLFWデータセットの実験において、圧倒的な性能改善を示す。
論文 参考訳(メタデータ) (2021-11-08T10:26:28Z) - Automated Decision-based Adversarial Attacks [48.01183253407982]
我々は、実用的で挑戦的な意思決定ベースのブラックボックスの敵意設定を考える。
この設定では、攻撃者はターゲットモデルに問い合わせるだけで最終分類ラベルを取得できる。
意思決定に基づく攻撃アルゴリズムを自動的に発見する。
論文 参考訳(メタデータ) (2021-05-09T13:15:10Z) - Online Model Selection: a Rested Bandit Formulation [49.69377391589057]
静止したバンディット設定における最善のアーム識別問題を紹介し,解析する。
我々は、この問題の後悔の新しい概念を定義し、ゲームの終わりに最小の期待損失を持つ腕を常に再生するポリシーと比較します。
最近のバンディット文献における既知のモデル選択の試みとは異なり、アルゴリズムは問題の特定の構造を利用して、予想される損失関数の未知のパラメータを学習する。
論文 参考訳(メタデータ) (2020-12-07T08:23:08Z) - Attack Agnostic Adversarial Defense via Visual Imperceptible Bound [70.72413095698961]
本研究の目的は、目視攻撃と目視攻撃の両方に対して一定の範囲内で堅牢な防衛モデルを設計することである。
提案するディフェンスモデルは,MNIST,CIFAR-10,Tiny ImageNetデータベース上で評価される。
提案アルゴリズムは攻撃非依存であり,攻撃アルゴリズムの知識を必要としない。
論文 参考訳(メタデータ) (2020-10-25T23:14:26Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
このような攻撃に対して,最先端の歩行認識モデルが脆弱であることを示す。
生成した対向ネットワークに基づくアーキテクチャを用いて、対向的な高品質な歩行シルエットやビデオフレームを意味的に生成する。
実験結果から, フレームの1分の1しか攻撃されない場合, 対象モデルの精度は劇的に低下することがわかった。
論文 参考訳(メタデータ) (2020-02-22T10:08:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。