論文の概要: Towards Interpretable Reasoning over Paragraph Effects in Situation
- arxiv url: http://arxiv.org/abs/2010.01272v1
- Date: Sat, 3 Oct 2020 04:03:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 09:11:56.994658
- Title: Towards Interpretable Reasoning over Paragraph Effects in Situation
- Title(参考訳): パラグラフ効果の解釈的推論に向けて
- Authors: Mucheng Ren, Xiubo Geng, Tao Qin, Heyan Huang, Daxin Jiang
- Abstract要約: 我々は,原因と効果を理解するためのモデルを必要とする状況において,段落効果を推論する作業に焦点をあてる。
本稿では,ニューラルネットワークモジュールを用いた推論プロセスの各ステップを明示的にモデル化する逐次的手法を提案する。
特に、5つの推論モジュールはエンドツーエンドで設計され、学習され、より解釈可能なモデルにつながる。
- 参考スコア(独自算出の注目度): 126.65672196760345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We focus on the task of reasoning over paragraph effects in situation, which
requires a model to understand the cause and effect described in a background
paragraph, and apply the knowledge to a novel situation. Existing works ignore
the complicated reasoning process and solve it with a one-step "black box"
model. Inspired by human cognitive processes, in this paper we propose a
sequential approach for this task which explicitly models each step of the
reasoning process with neural network modules. In particular, five reasoning
modules are designed and learned in an end-to-end manner, which leads to a more
interpretable model. Experimental results on the ROPES dataset demonstrate the
effectiveness and explainability of our proposed approach.
- Abstract(参考訳): 本稿では,背景項に記載された原因や影響をモデルで理解し,その知識を新たな状況に応用することが必要な状況において,段落効果を推論する作業に焦点をあてる。
既存の作業では複雑な推論プロセスを無視し、ワンステップの"ブラックボックス"モデルで解きます。
本稿では,人間の認知過程に着想を得て,ニューラルネットワークモジュールを用いて推論過程の各ステップを明示的にモデル化する手法を提案する。
特に、5つの推論モジュールはエンドツーエンドで設計され、学習され、より解釈可能なモデルとなる。
ROPESデータセットの実験結果は,提案手法の有効性と説明可能性を示している。
関連論文リスト
- Causal Abstraction in Model Interpretability: A Compact Survey [5.963324728136442]
因果的抽象化は、モデル行動の基礎となる因果的メカニズムを理解し説明するための原則化されたアプローチを提供する。
本研究は, 因果的抽象の領域を掘り下げ, その理論的基礎, 実践的応用, モデル解釈可能性の分野への含意について考察する。
論文 参考訳(メタデータ) (2024-10-26T12:24:28Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - Inverse Decision Modeling: Learning Interpretable Representations of
Behavior [72.80902932543474]
我々は,逆決定モデルに関する表現的,統一的な視点を開拓する。
これを逆問題(記述モデルとして)の形式化に用います。
この構造が(有界な)有理性の学習(解釈可能な)表現を可能にする方法について説明する。
論文 参考訳(メタデータ) (2023-10-28T05:05:01Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
得られた知識を有向非巡回因果グラフの形で公開することを提案する。
また、この因果発見プロセスを状態依存的に設計し、潜在因果グラフのダイナミクスをモデル化する。
提案するフレームワークは,動的因果探索モジュール,因果符号化モジュール,予測モジュールの3つの部分から構成され,エンドツーエンドで訓練される。
論文 参考訳(メタデータ) (2023-09-30T20:59:42Z) - Consistent Explanations in the Face of Model Indeterminacy via
Ensembling [12.661530681518899]
この研究は、モデル不確定性の存在下で予測モデルに対して一貫した説明を提供することの課題に対処する。
これらのシナリオで提供される説明の一貫性を高めるためのアンサンブル手法を導入する。
本研究は,説明文の解釈において,モデル不確定性を考慮することの重要性を強調した。
論文 参考訳(メタデータ) (2023-06-09T18:45:43Z) - Disentangling Reasoning Capabilities from Language Models with
Compositional Reasoning Transformers [72.04044221898059]
ReasonFormerは、人間のモジュール的および構成的推論プロセスを反映するための統一的な推論フレームワークである。
表現モジュール(自動思考)と推論モジュール(制御思考)は、異なるレベルの認知を捉えるために切り離される。
統一された推論フレームワークは、単一のモデルで複数のタスクを解決し、エンドツーエンドでトレーニングされ、推論される。
論文 参考訳(メタデータ) (2022-10-20T13:39:55Z) - Towards Computing an Optimal Abstraction for Structural Causal Models [16.17846886492361]
我々は抽象学習の問題に焦点をあてる。
我々は,情報損失の具体的な尺度を提案し,その新しい抽象化の学習への貢献について説明する。
論文 参考訳(メタデータ) (2022-08-01T14:35:57Z) - An Interpretable Neuro-Symbolic Reasoning Framework for Task-Oriented
Dialogue Generation [21.106357884651363]
我々は,モデル決定を推論チェーンで正当化する明示的推論を行うために,ニューロシンボリックを導入する。
仮説生成器と推論器からなる2相手法を提案する。
システム全体は、推論チェーンアノテーションを使わずに、生のテキスト対話を利用して訓練される。
論文 参考訳(メタデータ) (2022-03-11T10:44:08Z) - Social Commonsense Reasoning with Multi-Head Knowledge Attention [24.70946979449572]
社会的コモンセンス推論には、テキストの理解、社会イベントに関する知識、その実践的な意味、およびコモンセンス推論スキルが必要である。
本稿では,半構造化コモンセンス推論規則を符号化し,それをトランスフォーマーベースの推論セルに組み込むことを学習する,新しいマルチヘッド知識アテンションモデルを提案する。
論文 参考訳(メタデータ) (2020-10-12T10:24:40Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
影響関数は、影響力のあるトレーニング例を特定することによって、モデルの判断を説明する。
本稿では,代表課題における影響関数と共通単語順応法の比較を行う。
我々は,学習データ中の成果物を明らかにすることができる影響関数に基づく新しい尺度を開発した。
論文 参考訳(メタデータ) (2020-05-14T00:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。