論文の概要: Knowledge-Enhanced Personalized Review Generation with Capsule Graph
Neural Network
- arxiv url: http://arxiv.org/abs/2010.01480v1
- Date: Sun, 4 Oct 2020 03:54:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 03:06:56.786605
- Title: Knowledge-Enhanced Personalized Review Generation with Capsule Graph
Neural Network
- Title(参考訳): カプセルグラフニューラルネットワークを用いた知識強化型パーソナライズドレビュー生成
- Authors: Junyi Li, Siqing Li, Wayne Xin Zhao, Gaole He, Zhicheng Wei, Nicholas
Jing Yuan and Ji-Rong Wen
- Abstract要約: カプセルグラフニューラルネットワークを用いた知識強調型PRGモデル(Caps-GNN)を提案する。
我々の生成プロセスは、アスペクトシーケンス生成と文生成という2つの大きなステップを含む。
組み込まれた知識グラフは、アスペクトレベルとワードレベルの両方でユーザの好みを高めることができる。
- 参考スコア(独自算出の注目度): 81.81662828017517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized review generation (PRG) aims to automatically produce review
text reflecting user preference, which is a challenging natural language
generation task. Most of previous studies do not explicitly model factual
description of products, tending to generate uninformative content. Moreover,
they mainly focus on word-level generation, but cannot accurately reflect more
abstractive user preference in multiple aspects. To address the above issues,
we propose a novel knowledge-enhanced PRG model based on capsule graph neural
network~(Caps-GNN). We first construct a heterogeneous knowledge graph (HKG)
for utilizing rich item attributes. We adopt Caps-GNN to learn graph capsules
for encoding underlying characteristics from the HKG. Our generation process
contains two major steps, namely aspect sequence generation and sentence
generation. First, based on graph capsules, we adaptively learn aspect capsules
for inferring the aspect sequence. Then, conditioned on the inferred aspect
label, we design a graph-based copy mechanism to generate sentences by
incorporating related entities or words from HKG. To our knowledge, we are the
first to utilize knowledge graph for the PRG task. The incorporated KG
information is able to enhance user preference at both aspect and word levels.
Extensive experiments on three real-world datasets have demonstrated the
effectiveness of our model on the PRG task.
- Abstract(参考訳): パーソナライズされたレビュー生成(PRG)は,ユーザの好みを反映したレビューテキストを自動的に生成することを目的としている。
以前の研究のほとんどは、非形式的コンテンツを生成する傾向にある製品の事実記述を明示的にモデル化していない。
さらに、主に単語レベルの生成に焦点を当てているが、複数の面でより抽象的なユーザの好みを正確に反映することはできない。
以上の課題に対処するため,カプセルグラフニューラルネットワーク~(Caps-GNN)に基づく知識強調型PRGモデルを提案する。
まず,リッチアイテム属性を活用したヘテロジニアス知識グラフ(hkg)を構築する。
caps-gnnを用いて,hkgから基本特性を符号化するグラフカプセルを学習する。
我々の生成プロセスは、アスペクトシーケンス生成と文生成という2つの大きなステップを含む。
まず,グラフカプセルに基づいてアスペクトカプセルを適応的に学習し,アスペクトシーケンスを推定する。
そして,推定アスペクトラベルに基づいて,HKGから関連エンティティや単語を組み込んで文を生成するグラフベースの複写機構を設計する。
私たちの知識では、prgタスクに知識グラフを利用するのは初めてです。
組み込まれたKG情報は、アスペクトとワードレベルの両方でユーザの好みを高めることができる。
3つの実世界のデータセットに関する広範囲な実験により、prgタスクにおけるモデルの有効性が実証された。
関連論文リスト
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Narrating Causal Graphs with Large Language Models [1.437446768735628]
本研究では、因果グラフからテキストを生成するための、大規模事前学習言語モデルの能力について検討する。
これらのグラフにエンコードされた因果推論は、医療やマーケティングのような多様なアプリケーションをサポートすることができる。
結果として、生成AIのユーザは、いくつかの例だけでモデルをトレーニングするときに、同様のパフォーマンスが得られるため、将来のアプリケーションをより早くデプロイできる可能性が示唆されている。
論文 参考訳(メタデータ) (2024-03-11T19:19:59Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
現実のテキストグラフを対象とするフレキシブルな問合せフレームワークを開発した。
一般のテキストグラフに対する最初の検索拡張生成(RAG)手法を提案する。
G-Retrieverは、このタスクをSteiner Tree最適化問題として定式化し、グラフ上でRAGを実行する。
論文 参考訳(メタデータ) (2024-02-12T13:13:04Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - A Survey of Pretraining on Graphs: Taxonomy, Methods, and Applications [38.57023440288189]
我々は、事前学習グラフモデル(PGM)に関する最初の包括的調査を提供する。
まず、グラフ表現学習の限界を示し、グラフ事前学習のモチベーションを導入する。
次に,PGMのソーシャルレコメンデーションおよび薬物発見への応用について述べる。
論文 参考訳(メタデータ) (2022-02-16T07:00:52Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
知識グラフ(KG)質問生成(QG)は,KGから自然言語質問を生成することを目的とする。
本研究は,KGサブグラフから質問を生成し,回答をターゲットとする,より現実的な環境に焦点を当てる。
論文 参考訳(メタデータ) (2020-04-13T15:43:22Z) - Generative Adversarial Zero-shot Learning via Knowledge Graphs [32.42721467499858]
本稿では,知識グラフ(KG)にリッチセマンティクスを組み込むことにより,KG-GANという新たな生成ZSL手法を提案する。
具体的には、グラフニューラルネットワークに基づいて、クラスビューと属性ビューの2つのビューからKGをエンコードする。
各ノードに対してよく学習されたセマンティックな埋め込み(視覚圏を表す)を用いて、GANを活用して、目に見えないクラスの魅力的な視覚的特徴を合成する。
論文 参考訳(メタデータ) (2020-04-07T03:55:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。