AFN: Attentional Feedback Network based 3D Terrain Super-Resolution
- URL: http://arxiv.org/abs/2010.01626v1
- Date: Sun, 4 Oct 2020 16:51:39 GMT
- Title: AFN: Attentional Feedback Network based 3D Terrain Super-Resolution
- Authors: Ashish Kubade, Diptiben Patel, Avinash Sharma, K. S. Rajan
- Abstract summary: We propose a novel fully convolutional neural network-based super-resolution architecture to increase the resolution of low-resolution Digital Elevation Model (LRDEM)
We perform the super-resolution of LRDEM using an attention-based feedback mechanism named 'Attentional Feedback Network' (AFN), which selectively fuses the information from LRDEM and aerial image to enhance and infuse the high-frequency features and to produce the terrain realistically.
- Score: 5.349223987137843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Terrain, representing features of an earth surface, plays a crucial role in
many applications such as simulations, route planning, analysis of surface
dynamics, computer graphics-based games, entertainment, films, to name a few.
With recent advancements in digital technology, these applications demand the
presence of high-resolution details in the terrain. In this paper, we propose a
novel fully convolutional neural network-based super-resolution architecture to
increase the resolution of low-resolution Digital Elevation Model (LRDEM) with
the help of information extracted from the corresponding aerial image as a
complementary modality. We perform the super-resolution of LRDEM using an
attention-based feedback mechanism named 'Attentional Feedback Network' (AFN),
which selectively fuses the information from LRDEM and aerial image to enhance
and infuse the high-frequency features and to produce the terrain
realistically. We compare the proposed architecture with existing
state-of-the-art DEM super-resolution methods and show that the proposed
architecture outperforms enhancing the resolution of input LRDEM accurately and
in a realistic manner.
Related papers
- Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - SIRAN: Sinkhorn Distance Regularized Adversarial Network for DEM
Super-resolution using Discriminative Spatial Self-attention [5.178465447325005]
Digital Elevation Model (DEM) is an essential aspect in the remote sensing domain to analyze and explore different applications related to surface elevation information.
In this study, we intend to address the generation of high-resolution DEMs using high-resolution multi-spectral (MX) satellite imagery.
We present an objective function related to optimizing Sinkhorn distance with traditional GAN to improve the stability of adversarial learning.
arXiv Detail & Related papers (2023-11-27T12:03:22Z) - Anti-Aliased Neural Implicit Surfaces with Encoding Level of Detail [54.03399077258403]
We present LoD-NeuS, an efficient neural representation for high-frequency geometry detail recovery and anti-aliased novel view rendering.
Our representation aggregates space features from a multi-convolved featurization within a conical frustum along a ray.
arXiv Detail & Related papers (2023-09-19T05:44:00Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFields is a novel class of networks specifically designed to effectively represent complex temporal signals.
We conduct comprehensive analysis of the properties of ResFields and propose a matrix factorization technique to reduce the number of trainable parameters.
We demonstrate the practical utility of ResFields by showcasing its effectiveness in capturing dynamic 3D scenes from sparse RGBD cameras.
arXiv Detail & Related papers (2023-09-06T16:59:36Z) - Exploiting Digital Surface Models for Inferring Super-Resolution for
Remotely Sensed Images [2.3204178451683264]
This paper introduces a novel approach for forcing an SRR model to output realistic remote sensing images.
Instead of relying on feature-space similarities as a perceptual loss, the model considers pixel-level information inferred from the normalized Digital Surface Model (nDSM) of the image.
Based on visual inspection, the inferred super-resolution images exhibit particularly superior quality.
arXiv Detail & Related papers (2022-05-09T06:02:50Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - Deep Burst Super-Resolution [165.90445859851448]
We propose a novel architecture for the burst super-resolution task.
Our network takes multiple noisy RAW images as input, and generates a denoised, super-resolved RGB image as output.
In order to enable training and evaluation on real-world data, we additionally introduce the BurstSR dataset.
arXiv Detail & Related papers (2021-01-26T18:57:21Z) - Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks [1.3764085113103222]
The presented research proposes a novel residual attention model (RAMS) that efficiently tackles the multi-image super-resolution task.
We introduce the mechanism of visual feature attention with 3D convolutions in order to obtain an aware data fusion and information extraction.
Our representation learning network makes extensive use of nestled residual connections to let flow redundant low-frequency signals.
arXiv Detail & Related papers (2020-07-06T22:54:02Z) - Feedback Neural Network based Super-resolution of DEM for generating
high fidelity features [4.722870664660785]
We propose a novel neural network architecture that learns to add high frequency details iteratively to low resolution DEM.
Our network DSRFB achieves RMSEs of 0.59 to 1.27 across 4 different datasets.
arXiv Detail & Related papers (2020-07-03T21:10:19Z) - D-SRGAN: DEM Super-Resolution with Generative Adversarial Networks [0.0]
LIDAR data has been used as the primary source of Digital Elevation Models (DEMs)
DEMs have been used in a variety of applications like road extraction, hydrological modeling, flood mapping, and surface analysis.
Deep learning techniques have become attractive to researchers for their performance in learning features from high-resolution datasets.
arXiv Detail & Related papers (2020-04-09T19:57:49Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.