Topological transitions induced by cavity-mediated interactions in
photonic valley-Hall metasurfaces
- URL: http://arxiv.org/abs/2010.01636v1
- Date: Sun, 4 Oct 2020 17:25:49 GMT
- Title: Topological transitions induced by cavity-mediated interactions in
photonic valley-Hall metasurfaces
- Authors: Charlie-Ray Mann, Eros Mariani
- Abstract summary: Topological phases of light exhibit unique properties beyond the realm of conventional photonics.
We propose a mechanism to induce topological transitions via accidental Dirac points in metasurfaces composed of interacting dipole emitters/antennas.
This mechanism could have important implications for other topological phases such as photonic higher-order topological insulators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topological phases of light exhibit unique properties beyond the realm of
conventional photonics. In particular the valley-Hall topological insulator has
been realized in a variety of photonic structures because it can be easily
induced by breaking certain lattice symmetries. However, the valley-Chern
numbers are usually fixed by design and the corresponding topological edge
states are forced to propagate in a fixed direction. Here, we propose a
mechanism to induce topological transitions via accidental Dirac points in
metasurfaces composed of interacting dipole emitters/antennas. For a fixed
arrangement of dipoles, we show that the topological phase depends critically
on the surrounding electromagnetic environment which mediates the dipole-dipole
interactions. To access different topological phases we embed the metasurface
inside a cavity waveguide where one can tune the dominant dipolar coupling from
short-range Coulomb interactions to long-range photon-mediated interactions by
reducing the cavity width; this results in a topological transition
characterized by an inversion of the valley-Chern numbers. Consequently, we
show that one can switch the chirality of the topological edge states by
modifying only the electromagnetic environment in which the dipoles are
embedded. This mechanism could have important implications for other
topological phases such as photonic higher-order topological insulators.
Related papers
- Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Interplay between topology and localization on superconducting circuits [8.677714774061142]
We investigate the competition between topology and localization in the one-dimensional Su-Schrieffer-Heeger (SSH) model.
We construct phase diagrams that illustrate the extended nontrivial, critical localization, and coexisting topological and critical localization phases.
We propose a method for detecting different quantum phases using current experimental setups.
arXiv Detail & Related papers (2023-05-04T01:34:29Z) - Topological Matter and Fractional Entangled Quantum Geometry through
Light [0.0]
We show that global topological properties are encoded from the poles of the surface allowing a correspondence between smooth fields, metric and quantum distance with the square of the topological number.
We develop the theory, "quantum topometry" in space and time, and present applications on transport from a Newtonian approach.
arXiv Detail & Related papers (2022-09-30T11:17:24Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Dissipative Topological Phase Transition with Strong System-Environment
Coupling [1.5992556036177072]
We study a topological emitter array coupled to an electromagnetic environment.
The photon-emitter coupling produces nonlocal interactions between emitters.
Our work shows the potential to manipulate topological quantum matter with electromagnetic environments.
arXiv Detail & Related papers (2021-03-30T15:44:27Z) - Self-organized topological insulator due to cavity-mediated correlated
tunneling [0.0]
We discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions.
The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry.
The emerging quantum phase is a topological insulator and is found at half fillings.
arXiv Detail & Related papers (2020-11-03T13:23:06Z) - Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer
Graphene/WSe$_2$ Heterostructure [0.4899818550820575]
Topological insulators, along with Chern insulators and Quantum Hall insulator phases, are considered as paradigms for symmetry protected topological phases of matter.
This article reports the experimental realization of the time-reversal invariant helical edge-modes in bilayer graphene/monolayer WSe$$-based heterostructures.
arXiv Detail & Related papers (2020-03-23T14:22:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.