IoT Malware Network Traffic Classification using Visual Representation
and Deep Learning
- URL: http://arxiv.org/abs/2010.01712v1
- Date: Sun, 4 Oct 2020 22:44:04 GMT
- Title: IoT Malware Network Traffic Classification using Visual Representation
and Deep Learning
- Authors: Gueltoum Bendiab, Stavros Shiaeles, Abdulrahman Alruban, Nicholas
Kolokotronis
- Abstract summary: We propose a novel IoT malware traffic analysis approach using deep learning and visual representation.
The detection of malicious network traffic in the proposed approach works at the package level, significantly reducing the time of detection.
The experimental results of Residual Neural Network (ResNet50) are very promising, providing a 94.50% accuracy rate for detection of malware traffic.
- Score: 1.7205106391379026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increase of IoT devices and technologies coming into service,
Malware has risen as a challenging threat with increased infection rates and
levels of sophistication. Without strong security mechanisms, a huge amount of
sensitive data is exposed to vulnerabilities, and therefore, easily abused by
cybercriminals to perform several illegal activities. Thus, advanced network
security mechanisms that are able of performing a real-time traffic analysis
and mitigation of malicious traffic are required. To address this challenge, we
are proposing a novel IoT malware traffic analysis approach using deep learning
and visual representation for faster detection and classification of new
malware (zero-day malware). The detection of malicious network traffic in the
proposed approach works at the package level, significantly reducing the time
of detection with promising results due to the deep learning technologies used.
To evaluate our proposed method performance, a dataset is constructed which
consists of 1000 pcap files of normal and malware traffic that are collected
from different network traffic sources. The experimental results of Residual
Neural Network (ResNet50) are very promising, providing a 94.50% accuracy rate
for detection of malware traffic.
Related papers
- Towards Novel Malicious Packet Recognition: A Few-Shot Learning Approach [0.0]
Deep Packet Inspection (DPI) has emerged as a key technology in strengthening network security.
This study proposes a novel approach that leverages a large language model (LLM) and few-shot learning.
Our approach shows promising results with an average accuracy of 86.35% and F1-Score of 86.40% on different malware types.
arXiv Detail & Related papers (2024-09-17T15:02:32Z) - Preliminary study on artificial intelligence methods for cybersecurity threat detection in computer networks based on raw data packets [34.82692226532414]
In this paper, we investigate deep learning methodologies capable of detecting attacks in real-time directly from raw packet data within network traffic.
We propose a novel approach where packets are stacked into windows and separately recognised, with a 2D image representation suitable for processing with computer vision models.
arXiv Detail & Related papers (2024-07-24T15:04:00Z) - Malware Classification using Deep Neural Networks: Performance
Evaluation and Applications in Edge Devices [0.0]
Multiple Deep Neural Networks (DNNs) can be designed to detect and classify malware binaries.
The feasibility of deploying these DNN models on edge devices to enable real-time classification, particularly in resource-constrained scenarios proves to be integral to large IoT systems.
This study contributes to advancing malware detection techniques and emphasizes the significance of integrating cybersecurity measures for the early detection of malware.
arXiv Detail & Related papers (2023-08-21T16:34:46Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
Internet of Things (IoT) networks contain benign traffic far more than abnormal traffic, with some rare attacks.
Most existing studies have been focused on sacrificing the detection rate of the majority class in order to improve the detection rate of the minority class.
We propose a lightweight framework named S2CGAN-IDS to expand the number of minority categories in both data space and feature space.
arXiv Detail & Related papers (2023-06-06T14:19:23Z) - MalIoT: Scalable and Real-time Malware Traffic Detection for IoT
Networks [6.426881566121233]
The system can handle the exponential growth of IoT devices thanks to the usage of distributed systems like Apache Kafka and Apache Spark.
These technologies work together to create a system that can give scalable performance and high accuracy.
arXiv Detail & Related papers (2023-04-02T20:47:08Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
Hardware-based malware detection approaches leverage hardware performance counters and machine learning prowess.
We meticulously analyze the approach, unraveling the most common methods, algorithms, tools, and datasets that shape its contours.
The discussion extends to crafting mixed hardware and software approaches for collaborative efficacy, essential enhancements in hardware monitoring units, and a better understanding of the correlation between hardware events and malware applications.
arXiv Detail & Related papers (2023-03-22T13:00:41Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Malware Squid: A Novel IoT Malware Traffic Analysis Framework using
Convolutional Neural Network and Binary Visualisation [2.309914459672557]
We introduce a novel IoT malware traffic analysis approach using neural network and binary visualisation.
The prime motivation of the proposed approach is to faster detect and classify new malware (zero-day malware)
arXiv Detail & Related papers (2021-09-08T00:21:45Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Darknet Traffic Big-Data Analysis and Network Management to Real-Time
Automating the Malicious Intent Detection Process by a Weight Agnostic Neural
Networks Framework [0.0]
We propose a novel darknet traffic analysis and network management framework to real-time automating the malicious intent detection process.
It is an effective and accurate computational intelligent tool for network traffic analysis, the demystification of malware traffic, and encrypted traffic identification in real-time.
arXiv Detail & Related papers (2021-02-16T19:03:25Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.