論文の概要: Learning by Minimizing the Sum of Ranked Range
- arxiv url: http://arxiv.org/abs/2010.01741v1
- Date: Mon, 5 Oct 2020 01:58:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 20:28:04.392439
- Title: Learning by Minimizing the Sum of Ranked Range
- Title(参考訳): ランク付き範囲の最小化による学習
- Authors: Shu Hu, Yiming Ying, Xin Wang, Siwei Lyu
- Abstract要約: 本稿では,学習目標を定式化するための一般的なアプローチとして,ランキング範囲(SoRR)の和を紹介した。
ランク付き範囲は、実数の集合のソートされた値の連続的なシーケンスである。
我々は,SoRRフレームワークの最小化のための機械学習における2つの応用,すなわち,バイナリ分類のためのAoRR集約損失とマルチラベル/マルチクラス分類のためのTKML個人損失について検討する。
- 参考スコア(独自算出の注目度): 58.24935359348289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In forming learning objectives, one oftentimes needs to aggregate a set of
individual values to a single output. Such cases occur in the aggregate loss,
which combines individual losses of a learning model over each training sample,
and in the individual loss for multi-label learning, which combines prediction
scores over all class labels. In this work, we introduce the sum of ranked
range (SoRR) as a general approach to form learning objectives. A ranked range
is a consecutive sequence of sorted values of a set of real numbers. The
minimization of SoRR is solved with the difference of convex algorithm (DCA).
We explore two applications in machine learning of the minimization of the SoRR
framework, namely the AoRR aggregate loss for binary classification and the
TKML individual loss for multi-label/multi-class classification. Our empirical
results highlight the effectiveness of the proposed optimization framework and
demonstrate the applicability of proposed losses using synthetic and real
datasets.
- Abstract(参考訳): 学習目標を形成するには、個々の値をひとつのアウトプットに集約する必要があることが多い。
このようなケースは、トレーニングサンプル毎の学習モデルの個人的損失と、クラスラベル全体の予測スコアを結合したマルチラベル学習の個人的損失を組み合わせた集合的損失に発生する。
本研究では,学習目標を定式化するための一般的なアプローチとして,ランキング範囲(SoRR)の和を紹介する。
ランク付き範囲は、実数の集合のソートされた値の連続的なシーケンスである。
SoRRの最小化は凸アルゴリズム(DCA)の違いによって解決される。
我々は,SoRRフレームワークの最小化のための機械学習における2つの応用,すなわち,バイナリ分類のためのAoRR集約損失とマルチラベル/マルチクラス分類のためのTKML個人損失について検討する。
提案手法の有効性を実証し,合成データと実データを用いて提案手法の有効性を実証した。
関連論文リスト
- Collaborative Learning with Different Labeling Functions [7.228285747845779]
我々は、$n$のデータ分布ごとに正確な分類器を学習することを目的とした、協調型PAC学習の亜種について研究する。
データ分布がより弱い実現可能性の仮定を満たす場合、サンプル効率の学習は依然として可能であることを示す。
論文 参考訳(メタデータ) (2024-02-16T04:32:22Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
そこで本研究では,データ依存型コンダクタンス(Data-dependent contraction)と呼ばれる手法を提案する。
この技術に加えて、不均衡学習のための微粒な一般化境界が確立され、再重み付けとロジット調整の謎を明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-10-07T09:15:08Z) - Easy Learning from Label Proportions [17.71834385754893]
Easyllpは、アグリゲーションラベルに基づいた、柔軟で簡単に実装可能なデバイアス方式である。
我々の手法は、任意のモデルが個々のレベルで予想される損失を正確に見積もることができる。
論文 参考訳(メタデータ) (2023-02-06T20:41:38Z) - The Group Loss++: A deeper look into group loss for deep metric learning [65.19665861268574]
グループ損失 (Group Loss) は、グループの全サンプルに埋め込まれた類似性を強制する微分可能なラベルプロパゲーション法に基づく損失関数である。
4つのデータセットでクラスタリングと画像検索の最先端結果を示し、2人の再識別データセットで競合結果を示す。
論文 参考訳(メタデータ) (2022-04-04T14:09:58Z) - Mixing Deep Learning and Multiple Criteria Optimization: An Application
to Distributed Learning with Multiple Datasets [0.0]
トレーニングフェーズは、マシンラーニングプロセスにおいて最も重要なステージです。
本研究では,特定の入力とラベルに関連付けられた出力との距離を基準として,複数の基準最適化モデルを構築した。
MNISTデータを用いた数値分類において,このモデルと数値実験を実現するためのスカラー化手法を提案する。
論文 参考訳(メタデータ) (2021-12-02T16:00:44Z) - Generalized One-Class Learning Using Pairs of Complementary Classifiers [41.64645294104883]
1クラス学習は、単一のクラスでのみアノテーションが利用できるデータにモデルを適合させる古典的な問題である。
本稿では,一級学習の新たな目的を探求し,これを一般化一級識別サブスペース(GODS)と呼ぶ。
論文 参考訳(メタデータ) (2021-06-24T18:52:05Z) - Sum of Ranked Range Loss for Supervised Learning [47.0464265614452]
本稿では,学習目標を定式化するための一般的なアプローチとして,ランキング範囲(SoRR)の和を紹介した。
ランク付き範囲は、実数の集合のソートされた値の連続的なシーケンスである。
サンプルレベルでのバイナリ/マルチクラス分類におけるAoRR集約損失と,ラベルレベルでのマルチラベル/マルチクラス分類におけるTKML個別損失という,SoRRフレームワークの最小化のための機械学習の2つの応用について検討する。
論文 参考訳(メタデータ) (2021-06-07T02:11:27Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
本稿では,F測度に対する微分可能な近似法を提案し,標準バックプロパゲーションを用いてネットワークをトレーニングする。
我々は、アダルト、コミュニティ、犯罪の2つの標準フェアネスデータセットの実験を行い、ATISデータセットの音声・インテリジェンス検出と音声・COCOデータセットの音声・イメージ概念分類を行った。
これらの4つのタスクのすべてにおいて、F測定は、クロスエントロピー損失関数で訓練されたモデルと比較して、最大8%の絶対的な絶対的な改善を含む、マイクロF1スコアの改善をもたらす。
論文 参考訳(メタデータ) (2020-08-08T03:02:27Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。