論文の概要: Test-time Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2010.01926v1
- Date: Mon, 5 Oct 2020 11:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 22:17:12.359518
- Title: Test-time Unsupervised Domain Adaptation
- Title(参考訳): テスト時間非教師なしドメイン適応
- Authors: Thomas Varsavsky, Mauricio Orbes-Arteaga, Carole H. Sudre, Mark S.
Graham, Parashkev Nachev, M. Jorge Cardoso
- Abstract要約: 畳み込みニューラルネットワークは、しばしば異なるスキャナや取得プロトコル(ターゲットドメイン)に一般化する。
対象領域から特定の対象領域に適応したモデルは、対象領域のより多くのデータを見たが、対象領域の特定の対象領域に適応していないドメイン適応法より優れていることを示す。
- 参考スコア(独自算出の注目度): 3.4188171733930584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks trained on publicly available medical imaging
datasets (source domain) rarely generalise to different scanners or acquisition
protocols (target domain). This motivates the active field of domain
adaptation. While some approaches to the problem require labeled data from the
target domain, others adopt an unsupervised approach to domain adaptation
(UDA). Evaluating UDA methods consists of measuring the model's ability to
generalise to unseen data in the target domain. In this work, we argue that
this is not as useful as adapting to the test set directly. We therefore
propose an evaluation framework where we perform test-time UDA on each subject
separately. We show that models adapted to a specific target subject from the
target domain outperform a domain adaptation method which has seen more data of
the target domain but not this specific target subject. This result supports
the thesis that unsupervised domain adaptation should be used at test-time,
even if only using a single target-domain subject
- Abstract(参考訳): 公開されている医療画像データセット(ソースドメイン)に基づいてトレーニングされた畳み込みニューラルネットワークは、しばしば異なるスキャナや取得プロトコル(ターゲットドメイン)に一般化される。
これはドメイン適応の活発なフィールドを動機付ける。
問題に対するいくつかのアプローチは対象ドメインからのラベル付きデータを必要とするが、他のアプローチはドメイン適応(UDA)に対する教師なしのアプローチを採用する。
UDA手法の評価は、対象領域内の見えないデータに一般化するモデルの能力を測定することである。
この研究では、これはテストセットに直接適応するほど役に立たないと論じます。
そこで我々は,各被験者に対して個別にテスト時間UDAを行う評価フレームワークを提案する。
対象ドメインから特定の対象対象に適応したモデルは、対象ドメインのより多くのデータを見たが、対象ドメインの特定の対象ではないドメイン適応法より優れていることを示す。
この結果は、たとえ単一の対象ドメインのみを使用する場合でも、教師なしドメイン適応がテスト時に使用されるべきだという仮説を支持します。
関連論文リスト
- Make the U in UDA Matter: Invariant Consistency Learning for
Unsupervised Domain Adaptation [86.61336696914447]
ICON (Invariant Consistency Learning) の略。
我々は2つの領域に等しくの地位を与えることで、教師なしDAのUを作成することを提案する。
ICON は古典的な UDA ベンチマークである Office-Home と VisDA-2017 で最先端のパフォーマンスを実現し、挑戦的な WILDS 2.0 ベンチマークでは従来の方法よりも優れています。
論文 参考訳(メタデータ) (2023-09-22T09:43:32Z) - Unsupervised Domain Adaptation for Anatomical Landmark Detection [5.070344284426738]
非教師なし領域適応(UDA)の設定下での解剖学的ランドマーク検出のための新しい枠組みを提案する。
このフレームワークは、自己学習とドメインの敵対的学習を活用して、適応中のドメインギャップに対処する。
脳波および肺のランドマーク検出実験は,領域間隙を広いマージンで低減し,他のUDA法より一貫して優れる手法の有効性を示した。
論文 参考訳(メタデータ) (2023-08-25T10:22:13Z) - Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives [16.68091981866261]
対象領域のデータの性能低下に対応するために、教師なし領域適応(UDA)を提案する。
UDAは、自然言語処理、ビデオ解析、自然言語処理、時系列データ分析、医用画像解析など、有望な成果を上げている。
論文 参考訳(メタデータ) (2022-08-15T20:05:07Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
セマンティックセグメンテーションに特化したトレーニングモデルは、大量のピクセル単位のアノテートデータを必要とする。
教師なしドメイン適応手法は、ラベル付きソースとラベルなしターゲットデータとの間の特徴分布の整合化を目的としている。
以前の研究は、対象データにスパース単一ピクセルアノテーションという形で、人間のインタラクションをこのプロセスに含めようと試みていた。
アクティブな選択による注釈付きポイントを用いた意味的セグメンテーションのための新しいドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-01T01:52:28Z) - Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised
Domain Adaptation [88.5448806952394]
我々は、対象ドメインのラベル付きデータと対象ドメインのラベルなしデータを用いて、対象ドメインの分類器を学習する、教師なしドメイン適応(UDA)を考える。
ラベル付きソースとターゲットデータの特徴を学習し,ラベル付きソースデータに微調整を行うコントラスト事前学習は,強いUDA手法と競合することを示す。
論文 参考訳(メタデータ) (2022-04-01T16:56:26Z) - Few-shot Unsupervised Domain Adaptation for Multi-modal Cardiac Image
Segmentation [16.94252910722673]
非教師なしドメイン適応(UDA)手法は、ラベルなしターゲットドメインとラベル付きソースドメインデータを使用することで、ソースとターゲットドメインのギャップを減らすことを目的としている。
本稿では, 対象患者1名のみを対象とする, 現実的なシナリオにおいて, UDA の可能性について検討する。
我々はまず、まずソース画像からターゲットスタイルの画像を生成し、ランダム適応インスタンス正規化(RAIN)を持つ単一ターゲット患者から多様なターゲットスタイルを探索する。
そして、生成したターゲット画像と教師付きでセグメンテーションネットワークを訓練する。
論文 参考訳(メタデータ) (2022-01-28T19:28:48Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA)は、ラベル付きデータが利用できないターゲットドメインでモデルを学習する問題を指す。
本稿では,視覚データセット中の潜在ドメインを自動的に発見することにより,udaの問題に対処する新しい深層アーキテクチャを提案する。
提案手法を公開ベンチマークで評価し,最先端のドメイン適応手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-03-25T14:33:33Z) - Self-Domain Adaptation for Face Anti-Spoofing [31.441928816043536]
推論時にラベルのないテストドメインデータを利用するための自己ドメイン適応フレームワークを提案する。
トレーニングステップで複数のソースドメインのデータを用いて,メタラーニングに基づく適応学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T08:46:39Z) - Domain Adaptation with Incomplete Target Domains [61.68950959231601]
本稿では、この新たなドメイン適応問題に対処するために、不完全データインプットに基づく Adversarial Network (IDIAN) モデルを提案する。
提案モデルでは,対象領域における部分的な観測に基づいて,欠落した特徴値を満たすデータ計算モジュールを設計する。
我々は、クロスドメインベンチマークタスクと、不完全なターゲットドメインを用いた実世界適応タスクの両方で実験を行う。
論文 参考訳(メタデータ) (2020-12-03T00:07:40Z) - Cross-domain Self-supervised Learning for Domain Adaptation with Few
Source Labels [78.95901454696158]
ドメイン適応のためのクロスドメイン自己教師型学習手法を提案する。
本手法は,ソースラベルが少ない新しいターゲット領域において,ターゲット精度を著しく向上させる。
論文 参考訳(メタデータ) (2020-03-18T15:11:07Z) - Enlarging Discriminative Power by Adding an Extra Class in Unsupervised
Domain Adaptation [5.377369521932011]
新たに人工的なクラスを追加し、新しいクラスのGAN生成サンプルとともにデータ上でモデルをトレーニングする。
私たちのアイデアは、DANN、VADA、DIRT-Tといった既存のメソッドと互換性がある、非常に一般的なものです。
論文 参考訳(メタデータ) (2020-02-19T07:58:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。