Specialized federated learning using a mixture of experts
- URL: http://arxiv.org/abs/2010.02056v3
- Date: Mon, 8 Feb 2021 14:29:45 GMT
- Title: Specialized federated learning using a mixture of experts
- Authors: Edvin Listo Zec, Olof Mogren, John Martinsson, Leon Ren\'e S\"utfeld,
Daniel Gillblad
- Abstract summary: In federated learning, clients share a global model that has been trained on decentralized local client data.
We propose an alternative method to learn a personalized model for each client in a federated setting.
Our results show that the mixture of experts model is better suited as a personalized model for devices in these settings.
- Score: 0.6974741712647655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In federated learning, clients share a global model that has been trained on
decentralized local client data. Although federated learning shows significant
promise as a key approach when data cannot be shared or centralized, current
methods show limited privacy properties and have shortcomings when applied to
common real-world scenarios, especially when client data is heterogeneous. In
this paper, we propose an alternative method to learn a personalized model for
each client in a federated setting, with greater generalization abilities than
previous methods. To achieve this personalization we propose a federated
learning framework using a mixture of experts to combine the specialist nature
of a locally trained model with the generalist knowledge of a global model. We
evaluate our method on a variety of datasets with different levels of data
heterogeneity, and our results show that the mixture of experts model is better
suited as a personalized model for devices in these settings, outperforming
both fine-tuned global models and local specialists.
Related papers
- Personalized Federated Learning via Stacking [0.0]
We present a novel personalization approach based on stacked generalization where clients directly send each other privacy-preserving models to be used as base models to train a meta-model on private data.
Our approach is flexible, accommodating various privacy-preserving techniques and model types, and can be applied in horizontal, hybrid, and vertically partitioned federations.
arXiv Detail & Related papers (2024-04-16T23:47:23Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Dirichlet-based Uncertainty Quantification for Personalized Federated
Learning with Improved Posterior Networks [9.54563359677778]
This paper presents a new approach to federated learning that allows selecting a model from global and personalized ones.
It is achieved through a careful modeling of predictive uncertainties that helps to detect local and global in- and out-of-distribution data.
The comprehensive experimental evaluation on the popular real-world image datasets shows the superior performance of the model in the presence of out-of-distribution data.
arXiv Detail & Related papers (2023-12-18T14:30:05Z) - PerFED-GAN: Personalized Federated Learning via Generative Adversarial
Networks [46.17495529441229]
Federated learning is a distributed machine learning method that can be used to deploy AI-dependent IoT applications.
This paper proposes a federated learning method based on co-training and generative adversarial networks(GANs)
In our experiments, the proposed method outperforms the existing methods in mean test accuracy by 42% when the client's model architecture and data distribution vary significantly.
arXiv Detail & Related papers (2022-02-18T12:08:46Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Personalized Federated Learning through Local Memorization [10.925242558525683]
Federated learning allows clients to collaboratively learn statistical models while keeping their data local.
Recent personalized federated learning methods train a separate model for each client while still leveraging the knowledge available at other clients.
We show on a suite of federated datasets that this approach achieves significantly higher accuracy and fairness than state-of-the-art methods.
arXiv Detail & Related papers (2021-11-17T19:40:07Z) - Decentralised Person Re-Identification with Selective Knowledge
Aggregation [56.40855978874077]
Existing person re-identification (Re-ID) methods mostly follow a centralised learning paradigm which shares all training data to a collection for model learning.
Two recent works have introduced decentralised (federated) Re-ID learning for constructing a globally generalised model (server)
However, these methods are poor on how to adapt the generalised model to maximise its performance on individual client domain Re-ID tasks.
We present a new Selective Knowledge Aggregation approach to decentralised person Re-ID to optimise the trade-off between model personalisation and generalisation.
arXiv Detail & Related papers (2021-10-21T18:09:53Z) - Subspace Learning for Personalized Federated Optimization [7.475183117508927]
We propose a method to address the problem of personalized learning in AI systems.
We show that our method achieves consistent gains both in personalized and unseen client evaluation settings.
arXiv Detail & Related papers (2021-09-16T00:03:23Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
We propose an alternative to federated learning, where each client federates with other relevant clients to obtain a stronger model per client-specific objectives.
We do not assume knowledge of underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest.
Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
arXiv Detail & Related papers (2020-12-15T19:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.