Personalized Federated Learning via Stacking
- URL: http://arxiv.org/abs/2404.10957v2
- Date: Sun, 21 Apr 2024 18:08:28 GMT
- Title: Personalized Federated Learning via Stacking
- Authors: Emilio Cantu-Cervini,
- Abstract summary: We present a novel personalization approach based on stacked generalization where clients directly send each other privacy-preserving models to be used as base models to train a meta-model on private data.
Our approach is flexible, accommodating various privacy-preserving techniques and model types, and can be applied in horizontal, hybrid, and vertically partitioned federations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional Federated Learning (FL) methods typically train a single global model collaboratively without exchanging raw data. In contrast, Personalized Federated Learning (PFL) techniques aim to create multiple models that are better tailored to individual clients' data. We present a novel personalization approach based on stacked generalization where clients directly send each other privacy-preserving models to be used as base models to train a meta-model on private data. Our approach is flexible, accommodating various privacy-preserving techniques and model types, and can be applied in horizontal, hybrid, and vertically partitioned federations. Additionally, it offers a natural mechanism for assessing each client's contribution to the federation. Through comprehensive evaluations across diverse simulated data heterogeneity scenarios, we showcase the effectiveness of our method.
Related papers
- Personalized Federated Learning for Cross-view Geo-localization [49.40531019551957]
We propose a methodology combining Federated Learning (FL) with Cross-view Image Geo-localization (CVGL) techniques.
Our method implements a coarse-to-fine approach, where clients share only the coarse feature extractors while keeping fine-grained features specific to local environments.
Results demonstrate that our federated CVGL method achieves performance close to centralized training while maintaining data privacy.
arXiv Detail & Related papers (2024-11-07T13:25:52Z) - Spectral Co-Distillation for Personalized Federated Learning [69.97016362754319]
We propose a novel distillation method based on model spectrum information to better capture generic versus personalized representations.
We also introduce a co-distillation framework that establishes a two-way bridge between generic and personalized model training.
We demonstrate the outperformance and efficacy of our proposed spectral co-distillation method, as well as our wait-free training protocol.
arXiv Detail & Related papers (2024-01-29T16:01:38Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETs is a novel solution by using a Mixture-of-Experts (MoE) framework within a Federated Learning (FL) setup.
Our method leverages the diversity of the clients to train specialized experts on different subsets of classes, and a gating function to route the input to the most relevant expert(s)
Our approach can improve accuracy up to 18% in state of the art FL settings, while maintaining competitive zero-shot performance.
arXiv Detail & Related papers (2023-06-14T15:47:52Z) - PaDPaF: Partial Disentanglement with Partially-Federated GANs [5.195669033269619]
Federated learning has become a popular machine learning paradigm with many potential real-life applications.
This work proposes a novel architecture combining global client-agnostic and local client-specific generative models.
We show that our proposed model achieves privacy and personalization by implicitly disentangling the globally consistent representation.
arXiv Detail & Related papers (2022-12-07T18:28:54Z) - PerFED-GAN: Personalized Federated Learning via Generative Adversarial
Networks [46.17495529441229]
Federated learning is a distributed machine learning method that can be used to deploy AI-dependent IoT applications.
This paper proposes a federated learning method based on co-training and generative adversarial networks(GANs)
In our experiments, the proposed method outperforms the existing methods in mean test accuracy by 42% when the client's model architecture and data distribution vary significantly.
arXiv Detail & Related papers (2022-02-18T12:08:46Z) - Personalized Federated Learning through Local Memorization [10.925242558525683]
Federated learning allows clients to collaboratively learn statistical models while keeping their data local.
Recent personalized federated learning methods train a separate model for each client while still leveraging the knowledge available at other clients.
We show on a suite of federated datasets that this approach achieves significantly higher accuracy and fairness than state-of-the-art methods.
arXiv Detail & Related papers (2021-11-17T19:40:07Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
We propose an alternative to federated learning, where each client federates with other relevant clients to obtain a stronger model per client-specific objectives.
We do not assume knowledge of underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest.
Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
arXiv Detail & Related papers (2020-12-15T19:30:29Z) - Specialized federated learning using a mixture of experts [0.6974741712647655]
In federated learning, clients share a global model that has been trained on decentralized local client data.
We propose an alternative method to learn a personalized model for each client in a federated setting.
Our results show that the mixture of experts model is better suited as a personalized model for devices in these settings.
arXiv Detail & Related papers (2020-10-05T14:43:57Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z) - Survey of Personalization Techniques for Federated Learning [0.08594140167290096]
Federated learning enables machine learning models to learn from private decentralized data without compromising privacy.
This paper highlights the need for personalization and surveys recent research on this topic.
arXiv Detail & Related papers (2020-03-19T10:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.