Knowledge Association with Hyperbolic Knowledge Graph Embeddings
- URL: http://arxiv.org/abs/2010.02162v1
- Date: Mon, 5 Oct 2020 17:11:35 GMT
- Title: Knowledge Association with Hyperbolic Knowledge Graph Embeddings
- Authors: Zequn Sun, Muhao Chen, Wei Hu, Chengming Wang, Jian Dai, Wei Zhang
- Abstract summary: We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation.
Experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.
- Score: 32.540462980828536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capturing associations for knowledge graphs (KGs) through entity alignment,
entity type inference and other related tasks benefits NLP applications with
comprehensive knowledge representations. Recent related methods built on
Euclidean embeddings are challenged by the hierarchical structures and
different scales of KGs. They also depend on high embedding dimensions to
realize enough expressiveness. Differently, we explore with low-dimensional
hyperbolic embeddings for knowledge association. We propose a hyperbolic
relational graph neural network for KG embedding and capture knowledge
associations with a hyperbolic transformation. Extensive experiments on entity
alignment and type inference demonstrate the effectiveness and efficiency of
our method.
Related papers
- Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning [0.0]
We have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph.
We have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes.
The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning.
arXiv Detail & Related papers (2024-03-18T17:30:27Z) - Graph Relation Distillation for Efficient Biomedical Instance
Segmentation [80.51124447333493]
We propose a graph relation distillation approach for efficient biomedical instance segmentation.
We introduce two graph distillation schemes deployed at both the intra-image level and the inter-image level.
Experimental results on a number of biomedical datasets validate the effectiveness of our approach.
arXiv Detail & Related papers (2024-01-12T04:41:23Z) - What can knowledge graph alignment gain with Neuro-Symbolic learning
approaches? [1.8416014644193066]
Knowledge Graphs (KGs) are the backbone of many data-intensive applications.
Current algorithms fail to articulate logical thinking and reasoning with lexical, structural, and semantic data learning.
This paper examines the current state of the art in KGA and explores the potential for neurosymbolic integration.
arXiv Detail & Related papers (2023-10-11T12:03:19Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Jointly Learning Knowledge Embedding and Neighborhood Consensus with
Relational Knowledge Distillation for Entity Alignment [9.701081498310165]
Entity alignment aims at integrating heterogeneous knowledge from different knowledge graphs.
Recent studies employ embedding-based methods by first learning representation of Knowledge Graphs and then performing entity alignment.
We propose a Graph Convolutional Network (GCN) model equipped with knowledge distillation for entity alignment.
arXiv Detail & Related papers (2022-01-25T02:47:14Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Multi-modal Entity Alignment in Hyperbolic Space [13.789898717291251]
We propose a novel multi-modal entity alignment approach, Hyperbolic multi-modal entity alignment(HMEA)
We first adopt the Hyperbolic Graph Convolutional Networks (HGCNs) to learn structural representations of entities.
We then combine the structure and visual representations in the hyperbolic space and use the aggregated embeddings to predict potential alignment results.
arXiv Detail & Related papers (2021-06-07T13:45:03Z) - Knowledge Graph Embeddings in Geometric Algebras [14.269860621624392]
We introduce a novel geometric algebra-based KG embedding framework, GeomE.
Our framework subsumes several state-of-the-art KG embedding approaches and is advantageous with its ability of modeling various key relation patterns.
Experimental results on multiple benchmark knowledge graphs show that theproposed approach outperforms existing state-of-the-art models for link prediction.
arXiv Detail & Related papers (2020-10-02T13:36:24Z) - CoLAKE: Contextualized Language and Knowledge Embedding [81.90416952762803]
We propose the Contextualized Language and Knowledge Embedding (CoLAKE)
CoLAKE jointly learns contextualized representation for both language and knowledge with the extended objective.
We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks.
arXiv Detail & Related papers (2020-10-01T11:39:32Z) - On the Role of Conceptualization in Commonsense Knowledge Graph
Construction [59.39512925793171]
Commonsense knowledge graphs (CKGs) like Atomic and ASER are substantially different from conventional KGs.
We introduce to CKG construction methods conceptualization to view entities mentioned in text as instances of specific concepts or vice versa.
Our methods can effectively identify plausible triples and expand the KG by triples of both new nodes and edges of high diversity and novelty.
arXiv Detail & Related papers (2020-03-06T14:35:20Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.