Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
- URL: http://arxiv.org/abs/2403.11996v3
- Date: Mon, 10 Jun 2024 19:06:26 GMT
- Title: Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning
- Authors: Markus J. Buehler,
- Abstract summary: We have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph.
We have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes.
The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.
Related papers
- Unsupervised Graph Neural Architecture Search with Disentangled
Self-supervision [51.88848982611515]
Unsupervised graph neural architecture search remains unexplored in the literature.
We propose a novel Disentangled Self-supervised Graph Neural Architecture Search model.
Our model is able to achieve state-of-the-art performance against several baseline methods in an unsupervised manner.
arXiv Detail & Related papers (2024-03-08T05:23:55Z) - Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
We propose a novel multiview contrastive learning approach that integrates diffusion filters on graphs.
By incorporating multiple graph views as augmentations, our method captures the structural equivalence in heterophilic graphs.
arXiv Detail & Related papers (2023-08-19T17:42:02Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
A novel context-aware graph-attention model (Context-aware GAT) is proposed.
It assimilates global features from relevant knowledge graphs through a context-enhanced knowledge aggregation mechanism.
Empirical results demonstrate that our framework outperforms conventional GNN-based language models in terms of performance.
arXiv Detail & Related papers (2023-05-10T16:31:35Z) - Representation Learning for Person or Entity-centric Knowledge Graphs:
An Application in Healthcare [0.757843972001219]
This paper presents an end-to-end representation learning framework to extract entity-centric KGs from structured and unstructured data.
We introduce a star-shaped classifier to represent the multiple facets of a person and use it to guide KG creation.
We highlight that this approach has several potential applications across domains and is open-sourced.
arXiv Detail & Related papers (2023-05-09T17:39:45Z) - Weisfeiler and Leman Go Relational [4.29881872550313]
We investigate the limitations in the expressive power of the well-known GCN and Composition GCN architectures.
We introduce the $k$-RN architecture that provably overcomes the limitations of the above two architectures.
arXiv Detail & Related papers (2022-11-30T15:56:46Z) - AIGenC: An AI generalisation model via creativity [1.933681537640272]
Inspired by cognitive theories of creativity, this paper introduces a computational model (AIGenC)
It lays down the necessary components to enable artificial agents to learn, use and generate transferable representations.
We discuss the model's capability to yield better out-of-distribution generalisation in artificial agents.
arXiv Detail & Related papers (2022-05-19T17:43:31Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.