Exact Two-body Expansion of the Many-particle Wave Function
- URL: http://arxiv.org/abs/2010.02191v2
- Date: Sun, 11 Oct 2020 15:10:08 GMT
- Title: Exact Two-body Expansion of the Many-particle Wave Function
- Authors: David A. Mazziotti
- Abstract summary: We show an exact two-body exponential product expansion for the ground-state wave function.
The two-body expansion offers a reduced parametrization of the many-particle wave function.
We demonstrate the result with the exact solution of the contracted Schr"odinger equation for the molecular chains H$_4$ and H$_5$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Progress toward the solution of the strongly correlated electron problem has
been stymied by the exponential complexity of the wave function. Previous work
established an exact two-body exponential product expansion for the
ground-state wave function. By developing a reduced density matrix analogue of
Dalgarno-Lewis perturbation theory, we prove here that (i) the two-body
exponential product expansion is rapidly and globally convergent with each
operator representing an order of a renormalized perturbation theory, (ii) the
energy of the expansion converges quadratically near the solution, and (iii)
the expansion is exact for both ground and excited states. The two-body
expansion offers a reduced parametrization of the many-particle wave function
as well as the two-particle reduced density matrix with potential applications
on both conventional and quantum computers for the study of strongly correlated
quantum systems. We demonstrate the result with the exact solution of the
contracted Schr\"odinger equation for the molecular chains H$_{4}$ and H$_{5}$.
Related papers
- Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - The three-body scattering hypervolume of identical fermions in one
dimension [8.35070936044077]
We study the zero-energy collision of three identical spin-polarized fermions with short-range interactions in one dimension.
We derive the expansions of the three-body wave function when the three fermions are far apart or one pair and the third fermion are far apart.
We calculate the shifts of energy and of pressure of spin-polarized one-dimensional Fermi gases due to a nonzero $D_F$ and the three-body recombination rate in one dimension.
arXiv Detail & Related papers (2023-02-27T11:43:03Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Exact solutions to the quantum many-body problem using the geminal
density matrix [0.0]
Two-body reduced density matrix (2-RDM) formalism reduces coordinate dependence to that of four particles.
Errors arise in this approach because the 2-RDM cannot practically be constrained to guarantee that it corresponds to a valid wave function.
We show how this technique is used to diagonalize atomic Hamiltonians, finding that the problem reduces to the solution of $sim N(N-1)/2$ two-electron eigenstates of the Helium atom.
arXiv Detail & Related papers (2021-12-21T18:04:11Z) - Effective Range Expansion for Describing a Virtual State [0.0]
We find the wave function inside the potential, and extending the solution with the region outside the range of potential.
The wave function outside the range of potential can be expanded in terms of spherical bessel and neumann function.
arXiv Detail & Related papers (2021-09-07T04:04:53Z) - Two electrons in harmonic confinement coupled to light in a cavity [62.997667081978825]
The energy and wave function of a harmonically confined two-electron system coupled to light is calculated.
Relative motion wave function has a known quasi-analytical solution.
arXiv Detail & Related papers (2021-08-03T18:56:50Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Aspects of quantum information in finite density field theory [0.0]
We study different aspects of quantum field theory at finite density using methods from quantum information theory.
For simplicity we focus on massive Dirac fermions with nonzero chemical potential, and work in $1+1$ space-time dimensions.
arXiv Detail & Related papers (2020-11-02T19:00:26Z) - Quantum dynamics and relaxation in comb turbulent diffusion [91.3755431537592]
Continuous time quantum walks in the form of quantum counterparts of turbulent diffusion in comb geometry are considered.
Operators of the form $hatcal H=hatA+ihatB$ are described.
Rigorous analytical analysis is performed for both wave and Green's functions.
arXiv Detail & Related papers (2020-10-13T15:50:49Z) - Alternative quantisation condition for wavepacket dynamics in a
hyperbolic double well [0.0]
We propose an analytical approach for computing the eigenspectrum and corresponding eigenstates of a hyperbolic double well potential of arbitrary height or width.
Considering initial wave packets of different widths and peak locations, we compute autocorrelation functions and quasiprobability distributions.
arXiv Detail & Related papers (2020-09-18T10:29:04Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.